Платина и рак: биохимия, физиология, медицина

Страница 3

Проникнув так или иначе в клетку, цисплатин и его аналоги начинают вносить глубокие искажения в работу ферментативных систем. Уже упомянутое сродство иона платины к сульфидной сере приводит к следующему: повстречав серосодержащий фермент** и присоединившись к SH-группе, цисплатин в лучшем (и редком) случае ингибирует его, а в худшем (и как правило) -- необратимо портит. Учтя отношение молекулярных масс ДДП и ферментов, можно увидеть, что для нарушения работы многих ферментных систем достаточно пикограммовых количеств платиновых препаратов. Некоторые ферменты в клетке присутствуют в количестве всего нескольких десятков молекул.*

Вопрос о том, попадает ли ДДП в ядро путем пассивной диффузии или обманывая внутриклеточную систему транспорта, остается невыясненным. В экспериментах на природной двухцепочечной ДНК in vitro показано, что в присутствие в растворе одновременно ДНК и белков, препараты платины связываются главным образом с ДНК. Это странный факт, т.к. сера (сульфидная, или тиомочевина) вытесняет мономерные нуклеотиды из координационной сферы платины. Привлечение “стерических факторов” и хелатного эффекта не дает безупречного объяснения.

В опытах in vitro показано, что репликация “платинированной” ДНК происходит с грубыми ошибками, похожими на те, что возникают при репликации ДНК с тимидиновыми димерами и апуриновыми сайтами в клетках с генетически отключенными системами ремонта (опыты на E.coli)3. На кишечной палочке показано также большое функциональное сходство платинированной ДНК с ДНК, полученной при рентгеновском или радиоактивном облучении клетки. Этот радиомиметический (radiomimetic) эффект позволяет использовать ДДП в качестве сенсибилизатора опухолей при радиотерапии.

В норме тимидиновыми димерами и иными повреждениями, возникающими при облучении или химическом воздействии** на ДНК, заведуют клеточные системы специфической, эксцизионной и пострепликативной репарации. Наиболее эффективна вторая, суть ее работы вкратце заключается в “вырезании” поврежденного участка нуклеазами и последующем досинтезе нормальной цепи по сохранившейся комплиментарной. Пострепликативная репарация включается при обнаружении дефектов рекомбинации вновь синтезированной цепи. В опытах на E.сoli показано, что клетка, дефектная по генам ключевых компонент тех или иных репарационных систем, намного более чувствительна к воздействию ДДП, чем здоровая. Это дает некоторое объяснение селективному действию платиновых препаратов на ряд (вполне конкретных) видов опухолей. В раковой клетке часть репарационных систем может не функционировать. Впрочем, возможен и обратный вариант – искусственный отбор, вызванный привнесенным токсином, приводит к выделению из популяции и размножению мутантов, в которых системы репарации чрезвычайно активны. Показано, что длительное выращивание клеток на платиносодержащей среде вызывает появление у них устойчивости к повышенным дозам цисплатина. У некоторых клеток (наиболее “проблемных” в настоящее время опухолей) эта устойчивость имеется изначально. Данный факт создает трудности в химиотерапии, так как встречаются пациенты с врожденной устойчивостью к препаратам платины (platinum-resistant patients). У некоторых устойчивость появляется в процессе терапии. В таких случаях лекарственный эффект пропадает, токсичность же остается на прежнем уровне.

Нормальная концентрация исправимых дефектов в клеточной ДНК – один-два на несколько десятков тысяч нуклеотидов. При платинировании ДНК in vitro было без труда получено несколько платиновых сшивок на 20-30 bp. Даже на порядок более низкая концентрация дефектов клеточным системам репарации оказывается не под силу. Репликация ДНК происходит с не исправляемыми ошибками, тут же и дочерние молекулы “нагружаются” платиной, и, наконец, после одного или нескольких делений, клетка гибнет.

Условие “после одного или нескольких делений” имеет критическую важность. Известно, что клетки раковой опухоли делятся намного чаще, чем клетки большинства тканей организма. Это позволяет платиновому препарату оказать селективное воздействие именно на опухоль, не повреждая ткани организма.

Описанный выше механизм уничтожения клеток действием препаратов платины очень эффективен. Но, к сожалению очень часто жертва платинового комплекса к раковой опухоли не имеет никакого отношения. Как правило, вместе с опухолью при терапии цисплатином и аналогами повреждаются все быстро растущие или обновляющиеся ткани организма – слизистые оболочки желудочно-кишечного тракта, дыхательной системы, глаз, эпителий кожи и роговицы, кровь, ткани прилегающие к ранам и т.д. Их клетки, получая то же количество платины (ее проникновение в клетки не селективно) и столь же быстро делясь, страдают от терапии так же, как и опухоль. Результатом, помимо “косметических” повреждений кожи и выпадения волос, может быть приобретенный иммунодефицит, изъязвления желудочно-кишечного тракта и ротовой полости, трудности с заживлением ран. На все это накладываются острые токсические эффекты, описанные выше.[7]

В итоге, несмотря на высокую эффективность подавления роста опухолей препаратами платины, такая терапия обходится организму очень и очень дорого. Вопрос при лечении развитых опухолей перед пациентом обычно ставится так: умереть через несколько месяцев от рака или через пять-шесть лет от последствий его терапии. Третьего, к сожалению, пока не дано, но интенсивные поиски более эффективных и менее токсичных лекарств сейчас ведутся в сотнях лабораторий по всему миру.

ЛЕКАРСТВА

В заключение будет дана сводка наиболее перспективных в настоящее время препаратов платины – так называемых препаратов второго поколения, обладающих улучшенными показателями противоопухолевой активности и токсичности по сравнению с цисплатином.[8] Структурные формулы приведены в Приложении 1.

Карбоплатин (синонимы CBDCA, JM-8).

Место синтеза: Великобритания

Диапазон оптимальных доз: 20-25 мг/кг

Спектр действия: мелко- и немелкоклеточный рак легкого, яичников, почки, толстой и прямой кишки, молочной железы, семинома, меланома, саркома мягких тканей, опухоли головы и шеи, рак эндометрия, рак щитовидной железы, мезотелиома плевры.

Основные побочные эффекты: гематотоксичность, аплазия лимфоидной ткани, атрофия половых желез, повреждение эпителия кишечника.

Достоинства: малая нефротоксичность, растворимость в воде (в 5 раз выше ДДП).

DACCP(синоним: JM-82).

Место синтеза: США

Диапазон оптимальных доз: 600-800 мг/м2

Спектр действия: рак легкого, желудка, шейки матки, назофарингеальной области.

Основные побочные эффекты: миелодепрессия, тромбо- и лейкопения, атрофия лимфатических узлов.

Достоинства: токсичность в 8-10 раз ниже ДДП, хорошо растворим в растворе гидрокарбоната.

Спироплатин (синоним: TNO-6).

Место синтеза: США и Нидерланды

Диапазон оптимальных доз: 30 мг/м2

Спектр действия: рак молочной железы, аденокарцинома легкого.

Основные побочные эффекты: миелодепрессия, нефротоксичность, электролитные нарушения состава крови, затруднение слюноотделения, потеря вкуса.

Достоинства: отсутствие перекрестной устойчивости с ДДП, хорошая растворимость в воде.

Недостатки: нестабилен в физрастворе, высоко токсичен.

PHIC.

Место синтеза: Франция

Диапазон оптимальных доз: ~100 мг/кг

Спектр действия: не сообщается.

Основные побочные эффекты: не сообщается.

Достоинства: отлично растворим в воде, не имеет перекрестной устойчивости с ДДП, не обладает ни нефро-, ни гематотоксичностью, быстро распространяется по органам и тканям.

Недостаток: так что же он все-таки лечит?

PYP.

Место синтеза: не сообщается.

Диапазон оптимальных доз: 10-30 мг/м2

Спектр действия: лейкоз, меланома, аденокарцинома молочной железы.