Пространственная ориентация живых организмов посредством зрительной сенсорной системы
Страница 3
Долю колбочкового зрения можно определить, направляя очень слабый свет на центральную ямку на сетчатке, в которой палочки отсутствуют. Долю участия в восприятии палочек определяют у «палочковых монохроматов», т. е. у редких индивидуумов, лишенных колбочек. Палочки гораздо чувствительнее к свету, чем колбочки, но содержат только один фотопигмент-родопсин, максимальная чувствительность которого лежит в синей части спектра. Поэтому синие предметы кажутся в сумерках ярче предметов других цветов.
Диапазон интенсивности света, воспринимаемого глазами позвоночных, огромен – они чувствительны к значениям освещенности, различающимся в миллиард раз. Это достигается разными механизмами, особыми для каждого вида. У многих рыб, амфибий, рептилий и птиц пигмент сосудистой оболочки концентрируется между наружными сегментами рецепторов при сильном освещении и оттягивается назад при его ослаблении. У этих животных наружные сегменты колбочек также подвижны. У некоторых рыб и амфибий в противоположном направлении движутся и наружные сегменты палочек. Количество света, достигающего сетчатки, регулируется сокращением зрачка. Этот рефлекс хорошо развит у угрей и камбал, ночных рептилий, птиц и млекопитающих (Prosser, 1973).
ФОТОРЕЦЕПТОРЫ НАСЕКОМЫХ
|
Ретинула образована небольшим числом (как правило, восемью) первичночувствующих фоторецепторных, или ретинулярных, клеток, посылающих свои аксоны в область первого оптического ганглия. Область ретинулы, лежащую на оптической оси омматидия, занимает рабдом, состоящий из рабдомеров, образованных ретинулярными клетками. Отдельный рабдомер можно рассматривать как аналог наружного сегмента фоторецепторов позвоночных. Однако в отличие от наружного сегмента, состоящего из стопки фоторецепторных мембран (дисков), рабдомер представляет собой систему плотно упакованных трубочек (микровилл). Но и в том, и в другом случае мы имеем дело с весьма разветвленной поверхностью наружной клеточной мембраны, которая образует на пути светового луча периодическую структуру, служащую для поглощения света и, по-видимому, содержащую в себе зрительный пигмент. По подсчетам Грибакина (1969), в ретинуле пчелы средняя площадь поверхности одной микровиллы равна 7.5х10 -2 мк2, а площадь поверхности всей фоторецепторной мембраны микровилл, принадлежащих одной зрительной клетке, составляет около 3800 мк2. То есть площадь поверхности фоторецепторной мембраны зрительной клетки пчелы сравнима с таковой для позвоночных. Вместе с тем следует отметить, что использование объема фоторецепторной структуры у пчелы примерно в два раза лучше, чем у позвоночных. Возможно, что такое уплотнение фоторецепторной структуры является одним из преимуществ, даваемых рабдомерной организацией глаза.
Со времен Экснера (Ехnеr, 1891) сложные глаза членистоногих принято относить к одному из двух типов — суперпозиционному или аппозиционному – в зависимости от способа образования изображения. Однако, как показали последующие исследования, между глазами обоих типов существуют и другие более глубокие различия (см., например: Goldsmith, 1964; Мазохин-Поршняков, 1965; Post a. Goldsmith, 1965). Дело в том, что суперпозиционным глазом обладают насекомые, обитающие в условиях слабой освещенности (ведущие главным образом ночной образ жизни), тогда как аппозиционный глаз присущ дневным насекомым. Суперпозиционному глазу свойственна очень высокая светочувствительность (и большая общая светосила) при малой скорости адаптации, причем важная роль в процессе адаптации принадлежит миграции гранул экранирующего пигмента (за счет миграции пигмента чувствительность суперпозиционного глаза может изменяться, например, на 2 порядка) (Post a. Goldsmith, 1965). Аппозиционный глаз характеризуется высокой скоростью адаптации, отсутствием миграции пигмента при изменении освещенности и значительно меньшей общей светочувствительностью. Учитывая это, Пост и Голдсмит (Post a. Goldsmith, 1965) предложили изменить терминологию и подразделять сложные глаза насекомых на два типа по совокупности их оптико-адаптационных характеристик, называя их соответственно скотопическим и фотопическим типом глаза. Такая классификация, конечно, лучше отражает те сдвиги, которые произошли в изучении зрения насекомых в последнее время (рис. 5).
Благодаря довольно многочисленным электронномикроскопическим работам (Femandez-Mordn, 1956, 1958; Daneel u. Zeutzschel, 1957; Goldsmith a. Philpott, 1957; Wolken, Capenos a. Turauo, 1957; Yasusumi a. Deguchi,1958; Wolken a. Gupta, 1961; Goldsmith, 1962: Грибакин, 1967) общая ультраструктурная организация ретинулярной клетки известна достаточно хорошо.
В фоторецепторах позвоночных структура, поглощающая свет (т. е. наружный сегмент), в значительной степени разобщена с телом клетки, тогда как у членистоногих рабдомеры идут параллельно телам ретинулярных клеток. Возможно, именно этим и объясняется большее быстродействие глаза насекомых по сравнению с глазом позвоночных (у пчелы критическая частота слияния мельканий достигает 300 вспышек в секунду).
В дистальной области клетки (наиболее близкой к кристаллическому конусу) обычно сосредоточено наибольшее количество митохондрий и гранул экранизирующего ретинулярного пигмента [муха Lucilia (Trujillo-Cenoz, 1965); пчела (Грибакин, 1967)]. В этой же области чаще всего встречаются мембраны шероховатой эндоплазматической сети, которая имеет непосредственное отношение к синтезу белка (Porter, 1961). Возможно, такая насыщенность дистальной области клетки важными органоидами свидетельствует о повышенной энергетической активности этой области. Последнее предположение подкрепляется тем, что в аппозиционном глазу плоскость изображения (и, следовательно, область максимальной освещенности) приходится именно на дистальную область ретинулы (Ехnеr, 1891; Vries a. Kuiper, 1958). Электронномикроскопические исследования показывают, что микровиллы рабдомеров связаны с центральной частью клетки системой радиальных тяжей – «мостиков» (табл. XXXVI) (Грибакин, 1969). Эта система по сути дела представляет собой крупную цитоплазматическую цистерну (главная эндоплазматическая цистерна, по Грибакину). которая тянется параллельно рабдомеру, сопровождая его по всей длине зрительной клетки (около 250 мк у пчелы). Удается проследить переход мембраны, окружающей главную цистерну, в мембрану каналов эндоплазматической сети. Интересно отметить, что эта цистерна продолжается вплоть до места отхождения аксона. Примерный подсчет показывает, что объем главной эндоплазматической цистерны зрительной клетки пчелы составляет для темноадаптированного глаза около 150—250 мк3, а объем рабдомера – 75-150 мк3. Далее, удается отметить феномен прилежания митохондрий к мембранам эндоплазматической сети, что свидетельствует о локальных интенсивных энергетических процессах, связанных с потреблением АТФ. Таким образом, цистерна и эндоплазматическая сеть, вероятно, отличаются по ионному составу от цитоплазматического матрикса, что может быть связано с активным переносом ионов и, по-видимому, передачей нервного возбуждения внутри зрительной клетки. Ядро ретинулярной клетки обычно вытянуто по длине клетки. У некоторых насекомых (например у восковой моли) оно способно перемещаться вдоль клетки при изменении освещенности (Post a. Goldsmith, 1965).