Культивирование вирусов
Страница 4
Перемешивание суспензионных культур проводят лопастными магнитными мешалками, а также круговыми качалками. В настоящее время широко применяют вращение флаконов и бутылей вокруг продольной оси (15-40 об/мин). На магнитных мешалках скорость вращения составляет 100—200 об/мин. Скорость перемешивания зависит от объема культуры; малые объемы культуры требуют невысокой скорости, тогда как ее необходимо увеличить при больших объемах. Для предотвращения оседания клеток на внутренней поверхности сосуда производят силиконирование. Силиконовое покрытие в силу своей гидрофобности препятствует прикреплению клеток к стенке сосуда.
Внутренние стенки культурального сосуда смачивают 5% или 10%-ным раствором силикона и после испарения растворителя (бензолового, ацетонового) сосуды выдерживают при 85°С и 200° (соответственно в течение 30 и 60 мин). После охлаждения сосуды наполняют горячей бидистиллированной водой и оставляют на 2 часа, затем их 3 раза ополаскивают бидистиллированной водой и высушивают при 100°С. Сосуды стерилизуют в сушильном шкафу при 170°С в течение 2 часов.
Максимальный рост клеток в суспензии наблюдают при рН 7,0-7,2. Питательные среды, применяемые для выращивания клеток в суспензии, не отличаются от сред, используемых для выращивания клеточных линий в однослойной культуре. Чаще всего при культивировании клеток в суспензиях берут среду Игла с двукратной концентрацией аминокислот и витаминов.
Суспензионные культуры потребляют в 2-7 раз больше глюкозы, чем монослойные. В процессе потребления глюкозы клетки выделяют в среду токсичную для них молочную кислоту. Потребление клетками глюкозы и выработка молочной кислоты идут параллельно и находятся в прямой зависимости от плотности клеточной популяции. Полезным оказалось прибавление к питательной среде инсулина в количестве от 40 до 200 ЕД на 1 л. Прибавление к питательной среде инсулина изменяет соотношение между количеством поглощенной глюкозы и выделенной молочной кислоты. Для клеток линии L указанный коэффициент может быть снижен с 74-81 до 37-38%.
Различные аминокислоты потребляются из питательной среды растущими клетками с неодинаковой скоростью. Отмечено, что регулярное прибавление аргинина (20-40 мг/л) и увеличение количества глутамина до 450 мг/л благоприятствуют росту взвешенных культур.
Прибавление инозитола (0,4 мг/л) позволяет ускорить рост культур амниотических клеток человека. Желательным является добавление к среде каталазы (1 мг/л) и тироксина (12 мг/л).
Большой интерес представляют работы, посвященные получению взвешенных культур клеток в синтетической среде, не содержащей сыворотки крови. Предпринимаются попытки увеличить вязкость питательной среды за счет безбелковых ингредиентов. С этой целью используется метил-целлюлоза и гиалуроновая кислота.
Метилцеллюлоза в концентрации 0,1-0,2% обладает максимальным защитным действием на взвешенные в среде клетки. Протективное действие метилцеллюлозы заключается в том, что молекулы образуют защитный слой вокруг клетки, предотвращающий повреждение клеток при перемешивании среды. Весьма важным показателем состояния суспензионной культуры является парциальное давление кислорода в жидкой фазе. Концентрация кислорода в газовой фазе зависит от плотности клеточной популяции и нередко бывает ниже атмосферной. Недостаток кислорода ведет к появлению грануляции цитоплазмы, клетки теряют правильную округлую форму. При небольшом избытке кислорода клетки имеют хорошо очерченную, правильную, округлую форму, и становятся очень крупными при повреждающем действии избытка кислорода. Оптимальная концентрация кислорода для различных клеточных культур находится в пределах от 9 до 17% или 293 мм рт. столба. При концентрации кислорода выше 20% происходит ингибиция клеточного роста. Так, при концентрации кислорода 24% размножение клеток почек эмбриона кролика (линия ERK) снижалось наполовину, а при 30% сводилось к нулю. Повышение концентрации кислорода токсически воздействует на клеточный метаболизм.
Таким образом, размножение клеток в суспензии зависит от концентрации клеток в исходной суспензии, аэрации и рН среды, состава питательной среды, способа перемешивания, объема суспензии и других факторов.
Однородность суспензии, возможность длительного поддержания клеток в логарифмической фазе роста, перспективы математического моделирования процессов клеточного роста в зависимости от влияния факторов внешней среды, удобство многократного исследования физиологического состояния культуры клеток в суспензии, высокая экономичность метода -вот далеко не полный перечень преимуществ суспензионных культур.
Суспензионные культуры широко используется в вирусологических исследованиях и для накопления больших количеств вируссодержащего материала, при изготовлении вакцин и диагностических препаратов.
3.5. КУЛЬТИВИРОВАНИЕ КЛЕТОК НА МИКРОНОСИТЕЛЯХ.
В 1967 г. Van Werel предложил метод культивирования, сочетающий элементы монослойного и суспензионного выращивания клеток, который он назвал методом «микроносителей». Суть его заключается в том, что клетки прикрепляются и размножаются на поверхности полимерных шариков-частиц «микроносителей» (МН), которые содержатся в суспензии с помощью перемешивающего устройства, например мешалки. На одной частице МН диаметром 160—230 мм может поместиться 350-630 (или в среднем 460) клеток. В одном мл среды можно суспензировать несколько тысяч частиц микроносителя, при этом общая площадь их составит от нескольких до 50 см2/мл.
Инокулированные в культиватор клетки прикрепляются к поверхности частиц МН и размножаясь, образуют сплошной монослой на каждой отдельной частице.
Основными преимуществами этого метода являются:
1) создание равномерных условий по всему объему сосуда, что делает возможным эффективно контролировать необходимые параметры (рН, р02 и др.); 2) получение высокой плотности клеточной популяции до 5-6 млн. клеток в 1 мл; 3) культивирование одновременно несколько сот миллиардов клеток; 4) введение постоянного контроля за динамикой роста клеток; 5) снижение роста контаминации в связи с сокращением операций, связанных с разгерметизацией культураль-ного сосуда; 6) значительная экономии питательных сред; 7) возможность сохранять выросшие клетки непосредственно на частицах при низких температурах; 8) возможность искусственно создавать различные концентрации МН с выросшими на них клетками; 9) возможность пассирования культуры без применения трипсина путем добавления свежих порций микроносителя.
Микроносители должны иметь:
- небольшой положительный заряд в пределах 1,5-1,8 МЭКВ/г. В связи с тем, что большинство клеток животных имеют слабо отрицательный заряд, они легче будут прикрепляться к такому МН:
- плотность 1,05—1,15 г/см; указанная плотность является оптимальной для поддержания МН во взвешенном состоянии;
- диаметр частиц от 100 до 250 мкм, что обеспечивает площади для роста нескольких сотен клеток;
- гладкую поверхность;
- прозрачность;
- отсутствие токсичности компонентов для клеток;
- незначительное впитывание компонентов среды;
- универсальность, обеспечивающую возможность использования их для первичных, диплоидных и гетероплоидных клеток. Немаловажное значение имеют свойства МН, которые позволяют использовать их многократно.
Проведено исследование многих гранулированных препаратов различной химической природы, в том числе из поперечно-сшитого (ПС) декстрана, ПС-агарозы, ПС-поливинилпиролидона, полиакрилнитрита, пористого селикагеля, полистирола, капрона, нейлона, алюмосиликата с целью использования их как микроносителей.
Пригодными являются только некоторые из них, главным образом имеющие в своей основе ПС-декстран.
Несколько зарубежных фирм разработали коммерческие препараты микроносителей, готовые к употреблению: Цитодекс-1, 2, 3 (Франция, Швеция), Супербит (США, Англия), Биосилон (Дания). Стоимость перечисленных препаратов довольно высока, поэтому необходимо проводить исследования по разработке и производству отечественных МН.