Витамин К

Страница 5

Витамин К2 представлен несколькими формами, отличающимися по длине изопреноидной цепи. Выделены производные с боковой цепью из 20, 30 и 35 углеродных атомов.

Витамин К2(20)

Витамин К2(30)

(2-метил-3-дифарнезил-1,4-нафтохинон)

Витамин К2(35)

Кроме природных витаминов К, в настоящее время известен ряд производных нафтохинона, обладающих антигеморрагическим действием, которые получены синтетическим путем. К их числу относятся следующие соединения:

Витамин К3

(2-метил-1,4-нафтохинон)

Витамин К4

(2-метил-1,4-нафтогидрохинон)

Витамин К5

(2-метил-4-амино-1-нафтогидрохинон)

Витамин К6

(2-метил-1,4-диаминонафтохинон)

Витамин К7

(3-метил-4-амино-1-нафтогидрохинон)

|В 1943 г. А. В. Палладин и М. М. Шемякин синтезировали дисульфидное производное 2-метил-1,4-нафтохинона, получившее название викасола, который применяется в медицинской практике в качестве заменителя витамина К:

Викасол

3. Физико-химические свойства

Витамин К1 представляет собой светло-желтое масло, которое кристаллизуется при температуре –20° и кипит при 115–145° в вакууме. Это вещество растворимо в хлороформе, диэтиловом эфире, этиловом спирте и других органических растворителях. Его растворы поглощают УФ лучи. Так, в петролейном эфире максимумы адсорбции находятся при длине волны, равной 243, 249, 261, 270 и 325 нм. В этом ряду наибольшую оптическую плотность (= 420) витамин К проявляет при К = 249 нм.

Витамин К2 – желтый кристаллический порошок с температурой плавления 54°, растворяющийся в органических растворителях. Он имеет адсорбционные спектры, сходные с таковыми витамина К1, но менее интенсивно поглощает УФ лучи. Например, в петролейном эфире максимум его поглощения находится при 248 нм и составляет = 295.

Витамин К3 представляет собой лимонно-желтое кристаллическое вещество с характерным запахом. Температура плавления 160°. Он слабо растворим в воде, что обусловлено отсутствием в его молекуле длинной углеводородной цепи.

Витамины К, содержащие в положении 3 изопреноидную цепь, относятся к светочувствительным соединениям. При освещении ультрафиолетом происходит фотолиз, отщепляется изопреноидная цепь, которую замещает гидроксил, а молекула фитола окисляется в кетон фитон.

Витамины К, будучи, как сказано выше, производными нафтохинона, обладают способностью к окислительно-восстановительным реакциям. На этой способности витаминов К основано количественное определение их полярографическим методом. Нафтохиноновая молекула, присоединяя два водорода, переходит в нафтогидрохиноновую. Эта реакция в присутствии кислорода воздуха обратима. Реакция восстановления нафтохинонов (окрашенных веществ) сопровождается их обесцвечиванием.

Витамины К способны непосредственно взаимодействовать с кислородом, присоединяя его в положении 2, 3 молекулы нафтохинона. Продуктом окисления является эпоксид:

Эпоксид витамина К1

Эпоксиды витаминов К сохраняют витаминную активность исходных молекул.

Витамин К3 под влиянием света и кислорода воздуха может давать димерное производное:

Димер витамина К3

Как отмечено выше, бисульфидное производное витамина К3 обладает витаминной активностью. Это важное для медицинской практики вещество получают воздействием бисульфита натрия на 2-метил-1,4-нафтохинон.

Хорошими стабилизаторами витамина К являются монокальциевый фосфат, пирофосфаты натрия или калия и др., стабилизирующее действие которых состоит в поддерживании в водном растворе кислой реакции (рН = 4,8). Смесь 0,5 кг пропаренной соевой муки с 140 г менадион-натрий-бисульфатом и 26 г СаН4(РO4)2 стабилизирует витамин на 97% в течение трех месяцев.

4. Специфичность строения. Гомовитамины и антивитамины К

К-витаминной активностью обладают многие производные нафтохинона (см. стр. 68). В зависимости от деталей их структуре существенно изменяется величина биологической активности соединения. Сравнительная оценка биологической активности витаминов группы К представлена в табл. 2.

Таблица 2

Биологическая активность витаминов группы К

Витамины

Активность, %

Витамины

Активность, %

К1

100

К5

100

К2

60

К6

100

К3

300

К7

100

К4

200

   

Как видно из данных табл. 2, гидрирование хиноидных групп, находящихся в положении 1,4, не оказывает существенного влияния на биологическую активность витаминов К. В то же время гидрирование самого нафтохинонового ядра приводит к почти полной утрате биологической активности молекулы. Замена гидроксильной группы на аминогруппу не сопровождается утратой биологической активности витамина. Для проявления биологической активности обязательно наличие метильной группы в положении 2 нафтохинонового ядра. Введение метильной группы в других позициях нафтохиноновой системы сопровождается резким уменьшением физиологической роли соединения.