Водоросли
Страница 2
|
C6H2O6+6H2O+2815680 Дж
Из уравнения видно, что на каждые 6 грамм-молекул углекислоты и воды синтезируется грамм-молекула глюкозы (C6H2O6), выделяется 6 грамм-молекул кислорода и накапливается 2815680 Дж энергии. Таким образом, функция фотосинтеза растений является, по существу, биохимическим процессом преобразования световой энергии в химическую.
Водоросли, уже простейшие из них – сине – зелёные, являются первыми организмами, у которых появилась в процессе эволюции способность осуществлять фотосинтез с использованием воды в качестве источника водорода и выделением свободного кислорода, то есть процесс, свойственный всем другим водорослям, а за ними и высшим растениям.
Осуществляемый растениями в грандиозном масштабе процесс преобразования энергии света в химическую энергию продуктов фотосинтеза является практически единственным 'руслом', через которое 'вливается' в биологически приемлемой форме энергия, необходимая для поддержания жизни и круговорота веществ в биосфере нашей планеты. Именно поэтому выдающийся русский естествоиспытатель К.А. Тимирязев говорил о «космической роли зелёных растений». О размерах фотосинтетической деятельности растений в планетарном масштабе можно судить по тому, что весь кислород атмосферы Земли имеет, как сейчас доказано, фотосинтетическое происхождение. Залежи каменного угля представляют собой своеобразный 'запас' некогда преобразованной в результате фотосинтеза растений солнечной энергии, складированный в определённые геологические эпохи.
Второй особенностью питания водорослей и других растений, не менее важной, хотя и не такой специфичной, как фотосинтез, является их способность усваивать азот, серу фосфор, калий и другие минеральные элементы в виде ионов минеральных солей и использовать их для синтеза таких важнейших компонентов живой клетки, как аминокислоты, белки, нуклеиновые кислоты, макроэргические соединения, вещества вторичного обмена. Среди сине – зелёных водорослей имеются формы, способные осуществлять процесс фиксации свободного азота атмосферы и превращать его в органические азотные вещества своего тела.
Клетка – основная структурная единица тела водорослей, представленных либо одноклеточными, либо многоклеточными формами.
Особенность одноклеточных форм определяется тем, что здесь организмы состоят всего из одной клетки, поэтому в её строении и физиологии сочетаются клеточные и организменные черты.
Мелкая, не видимая простым глазом одноклеточная водоросль выполняет роль своеобразной фабрики, которая добывает сырьё, его перерабатывает и производит такие ценные соединения, как белки, углеводы и жиры. Кроме того, важным продуктом её деятельности считается кислород. Таким образом, она активно участвует в круговороте веществ в природе. Одноклеточные водоросли иногда образуют временные или постоянные скопления в виде колоний.
Многоклеточные формы возникли после того, как клетка проделала длительный и сложный путь развития в качестве самостоятельного организма.
При знакомстве с водорослями бросается в глаза чрезвычайное разнообразие как форм, так и размеров их клеток. Наибольшая пестрота картин обнаруживается у свободноживущих одноклеточных водорослей.
У водорослей, в отличие от высших растений, встречаются клетки, содержимое которых окружено лишь тонкой мембраной. Такие клетки обычно называют голыми. Они не способны сохранять свою форму и постоянно находятся в амёбоидном состоянии. Подобного рода клетки встречаются как среди одноклеточных, так и многоклеточных водорослей, чаще всего на стадии гамет и зооспор.
Клетки некоторых водорослей (эвгленовых, жёлто – зелёных) помимо плазмалеммы, окружены кожистым, эластичным слоем. Этот слой получил название пелликулы, или перипласта. Он состоит из фибриллярного вещества и имеет сложную, многослойную организацию. Клетки с такой пелликулой обычно очень изменчивы по форме. Только толстая, похожая на панцирь пелликула может прочно её зафиксировать. На поверхности пелликулы иногда возникают складки, выросты в виде зубцов или утолщения, называемые чешуйками. Эти структуры в различных сочетаниях образуют самые причудливые узоры, придавая организму неповторимый облик. Но главная их функция – повышение прочности клеточного покрова.
Последующим развитием растительной клетки следует признать появление на её поверхности покрова в виде оболочки – сначала пектиновой, а затем и целлюлозной. Преимущество этого образования состоит в том, что оно удачно сочетает в себе защитную и опорную функции с возможностью ростовых процессов и проницаемостью.
Клеточные оболочки водорослей весьма разнообразны как по своему строению, так и по химическому составу. Толщина оболочки варьируется не только от вида к виду, но и даже в пределах одного вида в зависимости от возраста клетки.
По времени заложения и особенностям роста различают первичные и вторичные оболочки. В активно делящихся клетках обычно образуется только первичная оболочка. Её рост идёт в двух направлениях: увеличивается поверхность и толщина.
Вторичная оболочка подвергается гидратации, становится эластичной и получает возможность растягиваться.
В любой клетке различают два тесно связанных друг с другом компонента: ядро и цитоплазму, причём от степени их развития зависит уровень организации клетки в целом. Водоросли – единственная группа растений, где представлены все известные в настоящее время типы клеточной организации: прокариотическая – у сине – зелёных водорослей, мезакариотическая – у панцирных жгутиковых, эукариотическая – у водорослей остальных отделов. У прокариот отсутствует морфологически оформленное ядро, а его функции выполняет состоящий из микрофибрилл ДНК нуклеоид.
У большинства водорослей в клетке присутствует всего одно ядро, но известны случаи, когда их бывает два-три и больше. Клетки с несколькими десятками или сотнями ядер называют цепоидными. Примечательно, что эти водоросли возвращаются к одноядерному состоянию при образовании специализированных клеток бесполого и полового размножения.
Форма, размеры и местоположение ядра в клетке сильно варьируется у разных водорослей, а также в зависимости от фазы развития, на которой находится тот или иной организм.
Очень мелкие ядра характерны для большинства одноклеточных водорослей.
В ядре у водорослей выявлены те же самые структуры, что и в ядре других эукариотов: оболочка, ядерный сок, ядрышко и включения хромотина.
Второй компонент клетки – цитоплазма – состоит из гомогеного основного вещества и погружённых в него телец различного размера и формы: митохондрий, диктиосом, эндоплазматической сети. Этот основной набор органелл присущ клеткам не только растений, но и животных.
В интенсивно растущих клетках, помимо перечисленных органелл, можно наблюдать хорошо развитую систему пузырьков, или вакуолей.
Также у водорослей имеются хлоропласты. Они могут быть чашевидными, лентовидными, спиралевидными, пластинчатыми, звездчатыми. Как правило, в подвижных клетках у зелёных водорослей присутствует всего один хлоропласт, у водорослей из других отделов их бывает два и больше, у молодых эвиленовых от 50 до 80, а в старых 200 – 300. Хлоропласты занимают в клетке либо центральное, либо постенное положение. В строении хлоропласта, помимо пластичных структур, выявлены более плотные зоны, представляющие собой скопление ДНК, многочисленных рассеяных мелких частиц – рибосом, глобул различного размера, формы и состава, которые образуются в ходе фотосинтеза.