Генетика популяций
Страница 3
Как показывают все эти вычисления, частота рецессивного аллеля в популяции неожиданно велика при малом числе индивидуумов с гомозиготным рецессивным генотипом.
Гетерозиготных индивидуумов, нормальных по фенотипу, но обладающих рецессивным геном, который в гомозиготном состоянии может вызвать нарушение метаболизма, называют носителями. Как показывают вычисления с использованием уравнения Харди-Вайнберга, частота носителей в популяции всегда выше, чем можно было бы ожидать на основании оценок частоты фенотипического проявления данного дефекта. Это ясно видно из табл. 1.
Таблица 1. Некоторые наследственные метаболические дефекты и частоты рецессивных гомозиготных и гетерозиготных генотипов
Нарушение |
Приблизительная частота рецессивного гомозиготного генотипа (q2) |
Частота ге-терозиготного генотипа (2pq) |
Альбинизм (отсутствие пигментации) |
1 на 10 000 (в Европе) |
1 на 50 |
Алкаптонурия (моча на воздухе чернеет) |
1 на 1 000 000 |
1 на 503 |
Семейная амавротическая идиотия (ведет к слепоте и смерти) |
1 на 40 000 |
1 на 100 |
Сахарный диабет (неспособность секретировать инсулин) |
1 на 200 |
1 на 7,7 |
Фенилкетонурия (может, если не будет вовремя выявлена, привести к задержке умственного развития) |
1 на 10 000 (в Европе) |
1 на 50 |
Из уравнения Харди-Вайнберга следует, что значительная доля имеющихся в популяции рецессивных аллелей находится у гетерозиготных носителей. Фактически гетерозиготные генотипы служат важным потенциальным источником генетической изменчивости. Это приводит к тому, что в каждом поколении из популяции может элиминироваться лишь очень малая доля рецессивных аллелей. Только те рецессивные аллели, которые находятся в гомозиготном состоянии, проявятся в фенотипе и тем самым подвергнутся селективному воздействию факторов среды и могут быть элиминированы. Многие рецессивные аллели элиминируются потому, что они неблагоприятны для фенотипа – обуславливают либо гибель организма еще до того, как он успеет оставить потомство, либо «генетическую смерть», то есть неспособность к размножению.
Однако не все рецессивные аллели неблагоприятны для популяции. Например, у человека из всех групп крови чаще всего встречается группа О, соответствующая гомозиготности по рецессивному аллелю. Другим примером служит серповидноклеточная анемия. Это наследственное заболевание крови, широко распространенное в ряде областей Африки и Индии, в некоторых средиземноморских странах и у негритянского населения Северной Америки. Индивидуумы, гомозиготные по соответствующему рецессивному аллелю, обычно умирают, не достигнув половой зрелости и элиминируя таким образом из популяции по два рецессивных аллеля. Что касается гетерозигот, то они не гибнут. Установлено, что во многих частях земного шара частота аллеля серповидноклеточности остается относительно стабильной. У некоторых Африканских племен частота гетерозиготного фенотипа достигает 40%. Раньше думали, что этот уровень поддерживается за счет появления новых мутантов. Однако в результате дальнейших исследований выяснилось, что дело обстоит иначе: оказалось, что во многих частях Африки, где среди факторов, угрожающих здоровью и жизни, важное место занимает малярия, люди, несущие аллель серповидноклеточности, обладают повышенной резистентностью к этой болезни. В малярийных районах Центральной Америки это селективное преимущество гетерозиготного генотипа поддерживает частоту аллеля серповидноклеточности среди населения на уровне 10-20%. У североамериканских негров, которые уже 200-300 лет не испытывают на себе селективного эффекта малярии, частота аллеля серповидноклеточности упала до 5%. Это снижение можно частично отнести на счет обмена генами в результате браков между представителями черной и белой расы, однако важным фактором служит отсутствие в Северной Америке малярии, устраняющее селективное давление в пользу гетерозигот; в результате рецессивный аллель медленно элиминируется из популяции.
Этот пример эволюции в действии ясно демонстрирует селективное влияние среды на частоту аллелей – механизм, нарушающий генетическое равновесие, предсказываемое законом Харди-Вайнберга. Именно такого рода механизмы вызывают в популяциях сдвиги, ведущие к эволюционному изменению.
Принцип равновесия Харди-Вайнберга гласит, что при наличии определенных условий частота аллелей остается постоянной из поколения в поколение. При этих условиях популяция будет находится в состоянии генетического равновесия и никаких эволюционных изменений происходить не будет. Однако принцип Харди-Вайнберга носит чисто теоретический характер. Очень немногие популяции находятся в условиях, при которых сохраняется равновесие (см. разд. 1.3).
Существует четыре главных источника генетической изменчивости: кроссинговер во время мейоза, независимое распределение хромосом при мейозе, случайное оплодотворение и мутационный процесс. Первые три источника часто объединяют под общим названием половой рекомбинации; Они обуславливают перетасовку генов, лежащую в основе происходящих изо дня в день непрерывных изменений. Но хотя эти процессы и приводят к образованию новых генотипов и изменяют частоты генотипов, они не вызывают никакого изменения имеющихся аллелей, так что частоты аллелей в популяции остаются постоянными. Многие эволюционные изменения, однако, происходят вслед за появлением новых аллелей, а главным источником последних служат мутации.
Условия, необходимые для равновесия Харди-Вайнберга, нарушаются и в ряде других случаев: когда скрещивание носит неслучайный характер; когда популяция мала, что ведет к дрейфу генов; когда генотипы обладают различной фертильностью, что создает генетический груз; при наличии обмена генами между популяциями. Ниже рассматривается каждая из этих ситуаций.
В большинстве природных популяций спаривание происходит неслучайным образом. Во всех тех случаях, когда наличие одного или нескольких наследуемых признаков повышает вероятность успешного оплодотворения гамет, имеет место половой отбор. У растений и животных существует много структурных и поведенческих механизмов, исключающих чисто случайный подбор родительских особей. Например, цветки, у которых лепестки крупнее и нектара больше, чем обычно, вероятно, будут привлекать больше насекомых, что повысит вероятность опыления и оплодотворения. Характер окраски насекомых, рыб и птиц и особенности их поведения, связанные с постройкой гнезда, охраной территории и брачными церемониями, повышают избирательность при скрещивании.
Влияние неслучайного скрещивания на генотип и на частоту аллелей демонстрирует, например, эксперименты, проведенные на дрозофиле. В культуре мух, содержавшей вначале равное число красноглазых и белоглазых самцов и самок, через 25 поколений исчезли все белоглазые особи. Как показали наблюдения, и красноглазые, и белоглазые самки предпочитали спариваться с красноглазыми самцами. Таким образом, половой отбор как механизм избирательного скрещивания обеспечивает некоторым особям более высокий репродуктивный потенциал, в результате чего вероятность передачи генов этих особей следующему поколению повышается. Репродуктивный потенциал особей с менее благоприятными признаками понижен, и передача их аллелей последующим поколениям происходит реже.