Деревянные конструкции
Страница 3
6. Установление фактических размеров образца
Рис. 10. Конструкция треугольной фермы на лобовых врубках:
1 – горизонтальный брус нижнего пояса; 2 – наклонный брус верхнего пояса; 3 – клиновидный брус; 4 – временные монтажные деревянные планки.
Исходные данные: H=235мм; l=692мм; hв =67 мм.
lск=183мм; Lн=928мм;
hвр=22мм; b=44мм;
Lв=65мм; hв=16мм;
7. Схема загружения образца и расстановки приборов
Ферма– образец устанавливается на траверсу испытательной машины или пресса и производится прижатие клиновидного бруса. Центрирование опорных узлов образца производится по ослабленному сечению. Это достигается установкой неподвижной и подвижной опор в местах пересечения оси наклонного элемента и оси нижнего горизонтального элемента, проходящего через ослабленное сечение.
Рис. 11. Схема загружения образца и расстановки приборов:
1 – индикаторы; 2 – уголок; 3 – шурупы; 4 – неподвижная опора; 5 – подвижная (катковая) опора.
8. Определение расчетной несущей способности образца
E=10000 МПа E90=400Мпа
Rсм = 13 МПа – расчетное сопротивление смятию вдоль волокон (СниП II-25-80 табл.3 п.1а гр.1);
Rсм90 = 3 МПа – расчетное сопротивление смятию поперек волокон (СниП II-25-80 табл.3 п.4а гр.2);
Raсм = 8.21 МПа – расчетное сопротивление смятию под углом a=340;
Rск = 2.1 МПа – максимальное расчетное сопротивление скалыванию вдоль волокон(СниП II-25-80 табл.3 п.1а гр.1);
Rскср = среднее расчетное сопротивление скалыванию вдоль волокон.
среднее расчетное сопротивление смятию вдоль волокон
b=0,25эмпирический коэффициент при одностороннем скалывании;
lскдлина площадки скалывания;
lплечо пары скалывающих сил .
Усилия, действующее в лобовой врубке, и эпюры скалывающих напряжений по длине площадки скалывания
Рис. 12. Усилия, действующие в лобовой врубке, и эпюра скалывающих напряжений по длине площадки скалывания.
Материал – сосна 2 сорт.
Расчетную нагрузку на образец Р определяют по расчетной несущей способности элементов и соединений фермы:
а) из условия скалывания врубки
б) из условия смятия врубки
в) из условия разрыва нижнего элемента в ослабленном сечении
При разрыве в ослабленном сечении Р определяется из формулы внецентренного растяжения:
Rp=7 МПа расчетное сопротивление растяжению вдоль волокон
момент сопротивления поперечного сечения нижнего пояса фермы.
г) из условия потери устойчивости наклонного сечения:
СниПII-25-80
Kоднор- коэффициент однородности материала (при скалывании 0.7 и 0.27 при растяжении)
Табл. 3
5. Обработка результатов испытания
Рис. 13. График зависимости смятия врубки от нагрузки.
По показателям индикаторов вычисляем нормальные напряжения в сечениях нижнего пояса при расчетной нагрузке.
Рис. 14. Эпюры нормальных напряжений в ослабленном и неослабленных сечениях нижнего пояса.
6. Сравнение теоретических и экспериментальных величин и анализ результатов испытания.
Dсм.теор=1,5 мм (табл. 15 п.4.3. СНиП II-25-80).
ВЫВОД: Разрушающая сила превышает теоретическую разрушающую силу в 2,5 раза, что создает запас прочности во время эксплуатации конструкции.
Контрольные вопросы
1. В каких пределах должны находиться и
?
, где
– высота растянутого элемента
не более 10 глубин врезки в элемент
2. Как необходимо центрировать лобовые врубки с одним зубом?
Центрирование опорных узлов образца производится по ослабленному сечению. Это достигается установкой неподвижной и подвижной опор в местах пересечения оси наклонного элемента и оси нижнего горизонтального элемента, проходящего через ослабленное сечение.
3. Чему равняется предельная деформация смятия в лобовой врубке?
мм
4. Из каких условий определяют расчетную несущую способность лобовой врубки?
а) из условия скалывания врубки:
б) из условия смятия врубки:
в) из условия разрыва нижнего элемента в ослабленном сечении:
г) из условия потери устойчивости наклонного элемента:
5. Как определить среднее скалывающее напряжении, действующего по длине площадки скалывания?
где Rск максимальное расчетное сопротивление скалыванию вдоль волокон, МПа;
b=0,25эмпирический коэффициент при одностороннем скалывании;
lскдлина площадки скалывания;
lплечо пары скалывающих сил .
6. Для чего нужны в опорном узле аварийный болт, подферменная подкладка, опорная подушка?
Аварийный болт обеспечивает безопастность. Подферменная подкладка и опорная подушка для равномерной передачи нагрузки, чтобы исключить смятие дерева.