Горная порода - термодинамическая система

Страница 2

Полная энергия системы разделяется на внешнюю и внутреннюю. Во внешнюю энергию входят энергия движения системы как целого и потенциальная энергия системы в поле сил. Вся остальная часть энергии системы называется её внутренней энергией.

В термодинамике не рассматривается движение системы как целого и изменение её потенциальной энергии при таком движении, поэтому энергией системы является её внутренняя энергия. Внутренняя энергия является внутренним параметром и, следовательно, при равновесии зависит от внешних параметров: квазистатических изменений и от температуры.

Зависимость внутренней энергии от температуры почти у всех встречающихся в окружающей нас природе систем такова, что с неограниченным ростом температуры внутренняя энергия также неограниченно растет. Это происходит потому, что каждая молекула или какой-либо другой элемент «обычной» термодинамической системы может иметь любое большое значение энергии.

При взаимодействии термодинамической системы с окружающей средой происходит обмен энергией. При этом возможны два различных способа передачи энергии от системы к внешним телам.

Первый способ передачи энергии, связан с изменением внешних параметров, называется работой, второй способ – без изменения внешних параметров – теплотой, а сам процесс передачи – теплообменом. Второй способ возможен только при абсолютном нуле температуры.

Количество энергии, переданное системой с изменением её внешних параметров, также называется работой, а не количеством работы, а количество энергии, переданное системе без изменения её внешних параметров – количеством теплоты. Эти способы передачи энергии не являются равноценными, так как затрачиваемая работа может непосредственно пойти на увеличение другого вида энергии (электрической, магнитной, упругой, потенциальной энергии в поле и т.д.). Количество теплоты без предварительного преобразования в работу, может пойти только на увеличение внутренней энергии системы.

Если система не обменивается с окружающими телами ни энергией, ни веществом, то она изолированная или замкнутая, но обмен энергии происходит только теплотой; если же система имеет обмен с внешним миром, то она открытая.

Первое начало термодинамики связано с законом сохранения и превращения энергии, т.е. является частным выражением этого закона и как многие общие законы природы устанавливаются опытным путем и носит эмпирический характер.

Одним из доказательств справедливости закона сохранения энергии и первого начала термодинамики была экспериментально

установленная Джоулем эквивалентность тепла и работы в круговых процессах.

В химической термодинамике (минералогической) из понятия механической работы и работы вообще исключается изменение энергии тела вследствие его перемещения в пространстве.

С точки зрения кинетической теории строения материи теплота представляет собой микрофизическую форму передачи энергии. Работа представляет собой макрофизическую форму передачи энергии. Изменение энергии определяется начальным и конечным состоянием системы и не зависит от характера протекания процесса. Иными словами кинетическая энергия – есть функция состояния системы. Теплота и работа не являются параметрами состояния данной системы, они не могут присутствовать в ней в том или ином количестве. Они появляются при переходе из одного состояния в

другое. В случае постоянного давления изменения энтальпии тепла является экстенсивным параметром.

Как и внутренняя энергия, энтальпия не зависит от пути протекания процесса и определяется параметрами начального и конечного состояния.

Начало термодинамики устанавливает, что внутренняя энергия изменяется только под влиянием внешних воздействий окружающей среды.

Теплота, подведенная к системе в изобарическом процессе, расходуется на изменение её энтальпии. Это свойство теплоты обнаружил Гесс, сформулировав закон, носящий его имя: тепловой эффект химической реакции не зависит от пути процесса, а определяется лишь состоянием конечных и исходных веществ.

Тепловым эффектом химической реакции – это есть количество теплоты выделяемой или поглощаемой теплоты при следующих условиях:

1. система совершает только работу расширения;

2. объем и давление постоянны;

3. температура исходных и конечных продуктов одинакова;

4. реакции протекают почти до конца.

Второе начало устанавливает направление протекания процесса, его глубину. Если система перешла из одного состояния в другое при постоянной температуре, получив (потеряв) некоторое количества, то изменение энтропии вводится другая. Свойства энтропии таковы, что в произвольных процессах (протекающих без внешнего воздействия) её приращение больше приведенного тепла, а при равновесии оно равно приведенному теплу.

Энтропия характеризует меру бесполезности тепла и меру беспорядка в системе. Величена изменения энтропии характеризует ту часть энергии, которую можно превратить только в тепло и нельзя превратить в полезную работу. Система находится в устойчивом равновесии, если изменение энтропии равно нулю.

Заключение.

Использование законов термодинамики является необходимой составной частью современных минералогических исследований. Оно определило успехи в изучении процессов кристаллизации магм, закономерностей гидротермального минералообразования явлений метасоматоза и метаморфизма.

Из всех термодинамических потенциалов наиболее употребительны в геологии энтальпия и потенциал Гиббса.

Энтальпия дает возможность подсчитать общий тепловой эффект реакции при постоянном давлении, определить энергетическую вероятность протекания процессов, идущих при постоянном давлении, температуре.

Использование термохимии в минералогии – расчет энергетического эффекта полного процесса с учетом всех участвующих в нем веществ.

В природе равно возможны как экзотермические, так и эндотермические реакции, что является естественным следствии закона сохранения энергии.

Вывод сделан о том, что по закону изменения потенциала Тиббса можно судить об энергетической выгодности только самопроизвольных геологических процессов.

Л И Т Е Р А Т У Р А

1. Учебное пособие по курсу «ХИМИИ», Горная порода – термодинамическая система, Иванкова Е.А., Москва 1989 г

2. Общая химия, Глинка Н.Л., издательство «ХИМИЯ» 1977 г.