Развитие оптики, электричества и магнетизма в XVIII веке
Страница 9
С начала 80-х гг. появилась лампа накаливания. Первым изобретателем лампы накаливания был русский инженер А. Н. Лодыгин (1847 - 1923). Одна из конструкций лампы Лодыгина представляла собой стеклянный баллон, внутри которого в вакууме между двумя медными стержнями помещался угольный стержень.
Уже в 1873 г. Лодыгин демонстрировал освещение своими лампами одной из улиц Петербурга. В 1874 г. Лодыгин получил за свое изобретение Ломоносовскую премию Академии наук.
В 1879 г. американский изобретатель Эдисон создал удачную конструкцию лампы накаливания, и вскоре она получила распространение во всем мире.
Использование электричества для связи, в качестве движущей силы, для освещения явилось стимулом создания электрических генераторов, изобретения трансформаторов и т. д.
Появившаяся вместе с этим новая область техники - электротехника во второй половине Х1Х в. приобрела важное практиче ское значение.
Все убыстряющееся развитие электротехники приводит к необходимости совершенствования измерительной аппаратуры. Конструируются и непрерывно совершенствуются гальванометры, амперметры, вольтметры, магазины сопротивлений, конденсаторы и т. д.
Все это, конечно, оказывает сильное положительное влияние на развитие научных исследований в области электромагнетизма, и развитие этой области физических наук идет все более быстрыми темпами.
РАЗВИТИЕ ОПТИКИ
Первые шаги в развитии геометрической оптики
В оптике, так же как и в механике, первые шаги были сделаны уже в древности. Тогда были открыты два закона геометрической оптики: закон прямолинейного распространения света и закон отражения света.
К познанию этих законов древние пришли, вероятно, очень давно. Опыт повседневной жизни: наблюдение тени, перспективы, применение метода визирования при измерении земельных площадей и при астрономических наблюдениях – приводил древних, во-первых, к понятию луча света, а во-вторых, к понятию прямолинейного распространения света.
Наблюдая затем явление отражения света, в частности, в металлических зеркалах, которые хорошо были известны в то время, древние пришли к пониманию закона отражения света.
Указанные два закона были описаны знаменитым греческим ученым Евклидом, жившим в III в. до нашей эры. С помощью этих законов Евклид объяснил целый ряд наблюдаемых явлений и, в частности, явлений отражения света от плоских и даже сферических зеркал.
Исследованием отражения света плоскими и сферическими зеркалами занимался другой знаменитый ученый древности – Архимед, живший также в III в. до нашей эры. Он знал свойство вогнутого сферического зеркала собирать световые лучи в фокусе. Об этом сообщается в сочинениях ученых древности: Архимед знал, «почему вогнутые зеркала, помещенные против солнца, зажигают подложенный трут».
Архимеду даже приписывают изобретение специальных зажигательных устройств из вогнутых зеркал, с помощыо которых он будто бы сжег вражеский флот. Это, конечно, легенда. Но то, что Архимед знал зажигательное свойство вогнутого зеркала, это факт.
Ученые древности имели представление о преломлении света и даже пытались установить закон преломления. Птолемей поставил с этой целью специальный опыт. Он взял диск, по которому вокруг центра вращались две линейки – указатели А и В. Этот диск Птолемей наполовину погружал в воду и перемещал верхнюю линейку до тех пор, пока она не казалась продолжением нижней, находящейся в воде. Вынув затем диск из воды, он определял углы падения и преломления.
Однако, хотя эксперимент Птолемея и был поставлен пра- вильно и он получил достаточно хорошие численные значения для углов падения и преломления, истинного закона он установить не сумел.
В средние века оптика продолжала развиваться на Востоке, а затем и в Европе. Однако каких-либо новых существенных результатов за этот длительный период в жизни человечества получено не было. Единственным важным достижением за это время было изобретение в XIII в. очков. Но это изобретение существенным образом не по- влияло на развитие теоретической оптики.
Следующим важнейшим изобретением, сыгравшим очень большую роль в последующем развитии оптики, было создание зрительной трубы.
Зрительная труба была изобретена не одним человеком. Возможно, что еще великий итальянский художник Леонардо да Винчи в самом начале XVI в. пользовался зрительной трубой.
Имеются сведения о других ученых и изобретателях, которые также пришли к этому изобретению.
Однако решающий шаг в изобретении зрительной трубы был сделан Галилеем.
В 1609 г. Галилей построил зрительную трубу. Свое изобретение он использовал как телескоп для наблюдения небесных тел и сделал при этом целый ряд важнейших астрономических открытий, которые дали ему возможность выступить в защиту учения Коперника. Однако Галилей не занимался теоретическими исследованиями по оптике. Он даже не разобран теорию действия изобретенной им зрительной трубы.
Основы теории простейших оптических инструментов разработал великий немецкий астроном Иоганн Кеплер (1571 – 1630). Еще в 1604г. он написал работу, в которой изложил основы геометрической оптики.
Он объяснил действие глаза и оптического прибора вообще, рассматривая каждую точку предмета как источник расходящихся лучей. Хрусталик глаза, зеркало, линза или система линз может вновь собрать эти расходящиеся лучи и из расходящегося пучка сделать сходящийся. Причем эти лучи опятьсоберутся в одну точку, которая будет представлять собой изображение точки предмета. Таким образом, каждой точке изображения соответствует одна и только одна точка предмета.
Кеплер рассматривал с этой точки зрения ход лучей в простейших оптических приборах, в двояковыпуклой и двояковогнутой линзе, поставленных друг за другом. Эта система линз представляла собой систему, примененную Галилеем в его зрительной трубе – телескопе.
В 1611 г. Кеплер издал новое сочинение по оптике. В трем уче-ный продолжал развивать теорию оптических приборов. В частности, он описал здесь зрительную трубу, отличную от трубы Галилея, которая оказалась более удачной. Труба Кеплера состояла из двух двояковыпуклых линз. Сам Кеплер только описал ее устройство, но трубы не построил. Ее сделали другие ученые.
Разработав теорию построения изображения в оптических приборах, Кеплер ввел новые понятии: «фокус» и «оптическая ось». Эти понятия применяются и в настоящее время в оптике.
Следующим важным шагом в развитии оптики было открытие закона преломления света.
Кеплер еще не знал этого закона. 3акон, которым он пользовался, был неверным. Однако это не помешало ученому в его исследованиях. Дело в том, что во всех случаях, которые Кеплер рассматривал, можно было считать, что световые лучи проходит близко к главной оптической оси. При этом ввиду малости угла падения a и угла преломления B закон преломления можно записать приближенно:
Закон, которым пользовался Кеплер для малых углов падения и преломления, приводил к правильным результатам.
3акон преломления света был установлен голландским ученым Снеллиусом, но он его не опубликовал. Этот закон был опубликован Декартом в 1637 г. Теперь геометрическая оптика, фунда-мент которой заложил Кеплер, могла развиваться дальше.
Развитие взглядов на природу света и первые открытия в области физической оптики
Первые представления о том, что такое свет, относятся также к древности.
В древности представления о природе света были весьма примитивными, фантастическими и к тому же весьма разнообразными. Однако, несмотря на разнообразие взглядов древних на природу света, уже в то время наметились три основных подхода к решению вопроса о природе света. Эти три подхода в последующем оформились в две конкурирующие теории – корпускулярную и волновую теории света.