Изучение темы «Световые волны» в курсе основной школы

Страница 7

Историческая справка (фрагмент урока). Данная тема изучается после электромагнитных волн. Поэтому важно обратиться к спектру электромагнитных волн (спектр электромагнитных волн, рис. 1).

Рис. 1. Спектр электромагнитных волн

Весь спектр электромагнитных волн можно приближенно разбить на три части – радиоволны с длиной волны от нескольких километров до сантиметров; свет, включая не только видимый свет, но и миллиметровые волны, инфракрасное, ультрафиолетовое и мягкое рентгеновское излучение; гамма-излучение, включая жесткое рентгеновское излучение с длиной волны менее 0,1 нм.

Свет - видимое излучение - представляет собой электромагнитное излучение с длиной волны от 400 до 760 нм. Скорость света определена экспериментально. Приближенно можно принять, что в вакууме скорость света равна 3×108м/с. По современным данным, скорость света в вакууме равна (299 792 458 1,2) м/с. Ни одно тело в мире не может двигаться со скоростью большей, чем скорость света в вакууме.

К основным свойствам электромагнитных волн, а следовательно, и световых волн относятся: распространение в однородной среде, отражение и преломление света на границе двух сред,

Законы отражения и преломления света были открыты экспериментально задолго до создания электромагнитной теории. Так, закон отражения был сформулирован еще древнегреческим ученым Эвклидом в Ш в. до н.э. Закон преломления света был установлен в 1620 г. голландским математиком В. Снеллиусом (1580-1628).

В 1690 г. Х.Гюйгенс создал первую волновую теорию света и сформулировал принцип, описывающий распространение волн. Исходя из волновой теории, он объяснил явление отражения и преломления света на границе двух сред. Принцип Гюйгенса успешно применяется в теории электромагнитных волн. Об этом они узнают в курсе физики старшей средней школы.

Звезды являются точечными источниками электромагнитных волн. Такой источник излучает в вакууме электромагнитные волны по всем направлениям с одинаковой интенсивностью.

Рис 2. Сферические поверхности, через которые с течением времени проходит волна.

На рисунке 2 показаны сферические поверхности, через которые с течением времени проходит волна. Амплитуда возмущения во всех точках сферического фронта волны, распространяющейся от точечного источника, одинакова. Такой подход к описанию сферической волны не противоречит принципу Гюйгенса. Этот принцип удобен для описания распространения как электромагнитных, так и механических волн.

Прямолинейное распространение света. Теоретическое обоснование прямолинейного распространения света (например, на основе принципа Ферма) в школьном курсе физики не изучается. Закон прямолинейного распространения света вводится на основе эксперимента. Для этого, например, можно провести опыт (рис. 3) со стержнем высотой АD и получить тень от него.

Рис.3. Установка для демонстрации прямолинейного распространения света.

Из рисунка следует, на некоторой высоте над стержнем АД в точке О расположен точечный источник света – маленькая лампочка. Мы увидим резко очерченную тень стержня DB. Проведем через точки O и В прямую линию. На ней также будет лежать и точка А. ОВ – это луч света, касающийся стержня в точке А. Если бы луч не был прямой линией, то тень DB была бы других размеров.

Рис.4. Установка для демонстрации прямолинейного распространения света – получения тени и полутени.

Если две маленькие лампочки расположить на некотором расстоянии от непрозрачного предмета, например цилиндра, то за ним образуется тень и полутень. Образование полутени не противоречит свойству света распространяться прямолинейно, а, наоборот, подтверждает его. В область тени не попадает свет ни от одной из двух лампочек. В область полутени попадает свет от какой-нибудь одной лампочки.

Образованием тени и полутени объясняются такие явления, как лунные и солнечные затмения. Земля и Луна, освещенные Солнцем, образуют конусы тени и полутени. Когда Луна попадает в тень Земли полностью, происходит полное затмение Луны. Солнечные затмения как полные видны в тех областях, где на Землю падает пятно лунной тени. В тех же областях, на которые падает полутень Луны, наблюдается частичное затмение Солнца, Земли, на которые падает полутень.

Волновая поверхность. Принцип Гюйгенса. При изучении этих вопросов формируются понятия волнового фронта и луча. Эти понятия требуют пояснения и уточнения с помощью схем и рисунков.

В курсах «Окружающий мир» и «Природоведение» используется понятия луча: «Луч – это линия, вдоль которой распространяется свет». С точки зрения физики формулировка этого понятия неточная. Требуется так построить содержание учебного материала, чтобы учащиеся пришли к выводу: «Луч в отличие от светового пучка, не материален. Он обозначает направление, вдоль которого волна переносит энергию».

Пусть в точке О (рис. 5) расположен точечный источник света. От источника света волны расходятся сферами в однородной и изотропной среде. Совокупность точек, образующих сферу, до которой дошел процесс распространения волны, называют волновой поверхностью или волновым фронтом.

Рис. 5. Распространение световых волн от точечного источника света.

Поместим на некотором расстоянии от источника экран с круглым отверстием. Прошедший через отверстие свет будет распространяться по прямой линии в виде пучка. Эта линия будет перпендикулярна волновому фронту и пройдет по оси симметрии пучка. Она называется лучом. Луч не материален и обозначает направление, вдоль которого волна переносит энергию. Если источник света расположен далеко, то лучи параллельны друг другу, а волна называется плоской.

Принцип Гюйгенса. Принцип Гюйгенса формулируется так:

Каждая точка среды, до которой дошло электромагнитное возмущение, сама становится источником вторичных волн.

Касательная поверхность ко всем вторичным волнам и дает положение поверхности, которой достигает волна через некоторый промежуток времени. Пусть источник света находится в точке О, волновой поверхностью в момент времени t является поверхность АВ (рис. 6). На рисунке 6,а показана часть сферической волны.

Рис.6,а. Часть сферической волны.

Рис 6,б. Волновая поверхность плоской волны.

Согласно принципу Гюйгенса каждая точка волновой поверхности АВ сама становится источником вторичных волн. За время Dt вторичные волны распространятся на расстояние r=uDt. Если провести касательную к вторичным волнам, то получим новую волновую поверхность СD.

На рисунке 6,б изображена волновая поверхность плоской волны.

Распространение волны можно рассматривать как движение волнового фронта.

Рис. 7. Распространение вторичной волны.

В классах с углубленным изучением физики целесообразно отметить, что теория Гюйгенса позволила теоретически вывести законы отражения и преломления света, но не смогла объяснить закон прямолинейного распространения света. Действительно, обратимся к работе Гюйгенса «Трактат о свете». В ней он приводит рисунок, подобный рисунку 7. Светящаяся точка А излучает волну, проходящую через отверстие BG. Точки B, b, b, b,b, G принадлежат волновой поверхности ВG. Эти точки становятся источниками вторичных волн. Так, точка В является точечным источником вторичной волны КL. Новой волновой поверхностью является поверхность DF, касающаяся точек С и Е.