Конструирование ДЛА РДТТ

Конструирование ДЛА РДТТ

Ракетные двигатели твердого топлива (РДТТ) получили в настоящее время широкое применение. Из опубликованных данных следует, что более 90 % существующих и вновь разрабатываемых ракет оснащаются РДТТ. Этому способствуют такие основные достоинства их, как высокая надежность, простота эксплуатации, постоянная готовность к действию. Наряду с перечисленными достоинствами РДТТ обладают рядом существенных недостатков: зависимостью скорости горения ТРТ от начальной температуры топливного заряда; относительно низким значением удельного импульса ТРТ; трудностью регулирования тяги в широком диапазоне.

РДТТ применяются во всех классах современных ракет военного назначения. Кроме того, ракеты с РДТТ используются в народно- хозяйственных целях, например, для борьбы с градом, бурения скважин, зондирования высоких слоев атмосферы и.д.

Разнообразие областей применения и выполняемых задач способствовало разработке большого числа различных конструкций, отличающихся габаритными, массовыми, тяговыми, временными и другими характеристиками. Некоторые представления о широте применения могут дать характеристики тяги РДТТ, находящиеся в крайних областях этого диапазона. Для РДТТ малых тяг значение тяги находится в пределах от 0,01 Н до 1600 Н. Тяги наиболее крупных двигателей достигают десятков меганьютонов. Например, для РДТТ диаметром 6,6 м тяга составляет 31 МН.

В данной работе рассмотрен вопрос проектирования в учебных ( с использованием ряда учебных пособий) РДТТ верхней ступени ракеты носителя, на смесевом топливе, полагающий знакомство с основами расчета и проектирования твердотопливных двигателей, методиками определения основных параметров двигателя, расчетом прочности, примерами проектирования топливных зарядов.

3. Выбор оптимальных параметров и топлива.

Тяга двигателя в пустоте

P(Н)=

30000

Время работы двигателя

t(с)=

25

Давление на срезе сопла

P a(Па)=

10270

Топливо ARCADENЕ 253A  

Начальная скорость горения

u1(мм/с)=

1,554

Показатель степени в законе горения

n

0,26

Коэффициент температурного влияния на скорость горения

a t=

0,00156

Начальная температура топлива

tн(°С)=

20

Начальная температура топлива

Tн(К)=

293,15

Плотность топлива

r(кг/м^3)=

1800

Давление в камере сгорания

P k(Па)=

6150000

Скорость горения при заданном давлении

u(мм/с)=

4,558

Температура продуктов сгорания

T(К)=

3359,6

Молекулярный вес продуктов сгорания

m(кг/кмоль)=

19,531

Средний показатель изоэнтропы на срезе сопла

n=

1,152

Расчётный удельный импульс

Iу(м/с)=

2934,8

Расходный комплекс

b(м/с)=

1551,5

Идеальный пустотный удельный импульс

Iуп(м/с)=

3077,3

Удельная площадь среза сопла Fуд

(м^2с/кг)=

30,5

Относительная площадь среза сопла

Fотн=

54,996

Коэффициент камеры

jк=

0,980

Коэффициент сопла

jс=

0,960

Коэффициент удельного импульса

jI=

0,941

Коэффициент расхода

mс=

0,990

Коэффициент расходного комплекса

jb=

0,990

Действительный расходный комплекс

b(м/с)=

1535,828

Действительный удельный пустотный импульс

Iуп(м/с)=

2895,124

Действительный расход газа

m(кг/с)=

10,362

Площадь минимального сечения

Fм(м^2)=

0,003

Средняя поверхность горения

W(м^2)=

1,263

Высота свода

e0(мм)=

113,947  

e0(м)=

0,114

Отношение площадей

k=Fсв/Fм=

3,000

Площадь свободного сечения канала

Fсв(м^2)=

0,008

Требуемая масса топлива

mт(кг)=

259,056      

Количество лучей звезды

i=

6

Угол

q(°)=

67,000

e=0,7…0,8  

0,750

Полуугол

q/2(р рад)=

0,585

Угол элемента звезды

a(рад)=

0,393