Полные лекции по аэродинамике и динамике полета. Часть 1

Страница 2

Если компоненты вектора скорости не обращаются в нуль и вместе со своими первыми производными однозначны и не имеют разрывов, то решение уравнения (1.3) существует и единственно. В противоположном случае существование или единственность может нарушаться, т.е. в некоторых точках пространства линии тока могут ветвиться или вырождаться в точку. Такие точки называются особыми или критическими.

Напомним некоторые математические термины [4] применительно к скорости, заданной в пространстве – полю скоростей.

Вектором будем обозначать поверхность с указанным направлением нормали , выражающимся через единичные векторы осей координат: , а скаляром S только площадь этой поверхности.

Потоком скорости через поверхность с заданным вектором нормали называется поверхностный интеграл

(1.4)

где Vn обозначает проекцию скорости на единичный вектор нормали к поверхности .

Градиентом называется векторная функция скаляра:

. (1.5)

Ротор скорости (вихрь) определяется формулой:

, (1.6)

а дивергенция скорости:

. (1.7)

Циркуляцией скорости по замкнутому контуру L с определенным направлением обхода называется криволинейный интеграл:

. (1.8)

Известные теоремы векторных полей [4] применимы и к полю скоростей. Теорема Стокса:

(1.9)

справедлива при ориентации обхода контура L и нормали к натянутой на него поверхности по правилу правого винта, а теорема Остроградского-Гаусса:

(1.10)

при условии, что замкнутая поверхность ограничивает объем W.

Полную производную по времени от скаляра A(,t) можно определить по известной [4] формуле:

(1.11)

Производную от интеграла по произвольному подвижному объему W, где от t зависит не только подынтегральная функция, но и объем, вычислим с помощью определения производной:

В последнем пределе W'–W образуется сдвигом элементарных площадок dS поверхности S, ограничивающей W, на расстояние VndS. Кроме того, при Dt ® 0: f(,t+Dt) ® f(,t) и деформированная поверхность Sў ® S, поэтому предел принимает значение (сравните с (1.4)) или по теореме Остроградского-Гаусса (1.10). Откуда в силу уравнения (1.11):

(1.12)

Вектор 0 тоже можно рассматривать, как поле вектора ротора скорости (,t) вихревое поле. Непосредственной проверкой легко убедиться, что всегда div = 0. Отсюда по теореме Остроградского-Гаусса следует, что поток ротора скорости сквозь любую замкнутую поверхность равен нулю: