Особенности искусственных спутников земли на примере спутниковых систем связи
Страница 2
«Бэби-мун» — «Луной-малюткой» — прозвали американцы нашего межпланетного первенца. Тысячи глаз и радиоприемников следили за его полетом. И каждый час его жизни интересовал ученых. Впервые земное тело поднималось на высоту 947 км. Впервые на таких высотах работал радиопередатчик.
Сигналы его показывали, как проходят радиоволны через верхние наэлектризованные слои атмосферы, позволяли глубже понять их строение.
Радиопередача требует энергии. Энергия в космосе есть. Ее можно заимствовать от Солнца. Пусть оно своими лучами заряжает аккумуляторы. Но на первом спутнике стояли батареи, заряженные на Земле. Они иссякли через некоторое время, однако и замолкший спутник продолжал служить науке. На больших высотах, где пролегал его путь, воздуха почти нет . но все же «почти нет», а не «совсем нет». Даже при незначительной плотности воздух оказывает сопротивление, и скорость спутника постепенно снижается. Благодаря этому можно установить, какова плотность атмосферы на различных высотах.
Некоторые особенности в движении спутника указывают на неравномерное притяжение Земли. Это позволяет уточнить форму и строение нашей планеты, найти скрытые под Землей тяжелые или легкие массы.
Теоретически тело, летящее над Землей со скоростью 8 км/сек, не упадет никогда. Но первые спутники не могли летать вечно. Ничтожное сопротивление воздуха со временем затормозило их полет. Они снижались и, влетев в плотные слои воздуха, сгорали и рассыпались.
Теперь нужно было решить самый важный вопрос: может ли живое существо перенести космический полет, или оно неминуемо погибнет за пределами атмосферы? Второй советский искусственный спутник, стартовавший 3 ноября 1957 г., должен был ответить на этот вопрос. На нем в космос на высоту до 1670 км отправилась первая путешественница — собака Лайка. Специальные приборы следили за ее дыханием, пульсом, кровяным давлением. Мы знаем, что Лайка хорошо перенесла стремительный старт и многосуточное путешествие вокруг Земли. На третьем советском искусственном спутнике Земли была установлена еще белее разнообразная аппаратура для изучения свойств земной атмосферы, солнечного излучения и т. п. Он весил 1,3 тонны, и запасы его электрической анергии для питания приборов пополнялись за счет действия солнечных лучей на установленные приспособления. Позднее несколько искусственных спутников удалось запустить и в США.
Третий советский спутник оказался самым долговечным и самым тяжелым. Советские люди сумели забросить в пространство солидное сооружение, размером с легковую машину.
III. Спутниковые системы связи.
Интересно, что идея применения искусственных спутников Земли для связи была высказана еще до запуска первого спутника. В 1945 г. известный советский ученый П. В. Шмаков выдвигал идею использования ИСЗ для организации всемирного телевизионного вещания.
Каковы же принципы применения ИСЗ для целей связи и почему спутниковые системы позволяют преодолеть многие трудности, возникающие при организации связи старыми, традиционными методами?
Известно, что шар отражает электромагнитные волны равномерно во всех направлениях, а его эффективная отражающая поверхность пропорциональна квадрату диаметра. Повышение отражательных свойств такого шара может быть достигнуто за счет увеличения его диаметра. Надув шара осуществлялся после вывода ИСЗ на орбиту способом сублимации. Оболочка имела защитную пленку и специальное металлизированное покрытие. Шар был составлен из отдельных меридиональных сегментов. Металлические шаровые сегменты, накладываемые на сферу, обеспечивали электрический контакт между всеми меридиональными сегментами.
Несмотря на очевидную простоту, дешевизну и определенные технические достоинства такой системы спутниковой связи, очень скоро выявились и серьезные ее недостатки. Для поддержания устойчивой связи потребовалась большая мощность передающих и высокая чувствительность приемных наземных устройств. Но и при выполнении этих условий радиолинии работали недостаточно устойчиво, были подвержены влиянию помех. Срок жизни таких спутников вследствие изменения их формы, сжатия оболочки и ухудшения отражательных свойств, а также из-за быстрой потери высоты оказался небольшим.
Спутник, однако, постоянно перемещается в пространстве и не может всегда находиться в зоне совместной видимости пунктов, нуждающихся в связи. Как же работает ССС, если требуется длительная, многочасовая или даже круглосуточная, связь между заданными пунктами ?
Одно из возможных решений этой задачи — запуск на соответствующие орбиты такого количества спутников, чтобы, как только один из них выйдет из зоны совместной радиовидимости пунктов, нуждающихся в связи, другой ИСЗ тотчас же входил бы в эту зону. Однако даже при достаточно большом количестве спутников, если их положение на орбитах случайно, не исключено такое положение, когда в зоне совместной видимости двух пунктов, нуждающихся в связи, не окажется ни одного ИСЗ.
От чего же зависит количество ИСЗ, необходимых для обеспечения непрерывной связи? Очевидно, что, чем больше высота их орбит, тем длительнее совместная видимость ИСЗ наземными пунктами.
Наклонение — важнейшее условие охвата системой спутниковой связи определенного района Земли, заданной зоны обслуживания. В связи с первостепенной, можно сказать определяющей, ролью орбит ИСЗ в системах спутниковой связи необходимо, хотя бы очень кратко, остановиться на некоторых основных их типах и понятиях.
Круговая орбита — это орбита, у которой расстояние от спутника до центра Земли приблизительно постоянно. Эллиптическая орбита — когда спутник движется вокруг Земли по кривой, близкой к эллипсу. Максимальное удаление ее от Земли (апогей) и минимальное (перигей) могут существенно отличаться друг от друга. Форма эллипса определяется величиной его эксцентриситета (отношением разности расстояний от центра Земли до апогея и перигея к большой оси эллипса). Орбиты с большим эксцентриситетом имеют высокий апогей и называются высокоэллиптическими.
Выбор формы орбиты (круговая, эллиптическая, высокоэллиптическая), наклонения (полярная, наклонная с заданным углом наклона, экваториальная), величины периода и характера обращения орбиты вокруг Земли (синхронная, геостационарная) является определяющим при проектировании той или иной системы спутниковой связи и в свою очередь обусловливается задачами проектируемой системы.
Начиная с первых запусков спутники связи почти всегда образуют систему. Одиночные ИСЗ связи широкого использования применяются редко.
В спутниковых системах связи используются низкоорбитальные аппараты, высокоэллиптические ИСЗ и геостационары.
Системы связи с использованием низкоорбитальных ИСЗ
Первыми для целей связи были применены низкоорбитальные ИСЗ.
Это объясняется, в частности, и тем, что вывод ИСЗ на низкие орбиты более прост и выполняется с наименьшими энергетическими затратами. Первые запуски низкоорбитальных спутников связи показали возможность и целесообразность применения ИСЗ для связи, подтвердили правильность технических принципов активной ретрансляции. Вместе с тем из первого опыта эксплуатации спутников на низких орбитах стало ясно, что они не могут обеспечить достаточно эффективного решения задач спутниковой связи.
Для расширения районов и увеличения времени действия ССС предусматривалось пойти по пути увеличения числа ИСЗ в системе. Вскоре, однако, стало ясно, что многоспутниковая система связи на низкоорбитальных ИСЗ как система общего пользования обладает многими эксплуатационными неудобствами и нерентабельна.
В низкоорбитальных системах связи спутники могут размещаться в пространстве друг относительно друга случайно пли упорядоченно. При случайном расположении понадобится большее число ИСЗ, однако упорядоченное местоположение их в пространстве потребует немалых усилий для создания и сохранения заданного относительного расположения. При этом необходимы постоянный контроль местоположения спутников и корректировка орбит вследствие эволюции их в процессе полета.