Радиотехника и космос
Страница 2
Есть, однако, существенное отличие радиоволн, излучаемых электрической искрой и радиоизлучением, например, нагретого утюга.
Радиоизлучение искры вызвано не только нагретостью раскаленного воздуха, но и другими, более сложными процессами. В таких случаях говоря не о тепловом радиоизлучении. Как мы увидим в дальнейшем, нетепловое радиоизлучение может возникнуть, например, при торможении сверхбыстрых электронов под действием магнитных сил.
Казалось бы, обилие всевозможных радио излучений позволяет изучать Вселенную в любом диапазоне радиоволн. Но, к сожалению, этому препятствует атмосфера.
2.Прозрачна ли атмосфера?
Трудно поверить, что воздух почти не прозрачен, что до наших глаз доходит лишь ничтожная доля всех излучений, существующих в природе.
Взгляните на рисунок 1. Он иллюстрирует прозрачность земной атмосферы для электромагнитных волн различных длин. Гладкая горизонтальная часть кривой, совпадающая с горизонтальной осью графика, отмечает те излучения, для которых земная атмосфера совершенно не прозрачна. Два «горба» кривой, один узкий, другой широкий, соответствуют двум «окнам прозрачности» в земной атмосфере.
Левое из них лежит в основном в области видимых лучей — от ультрафиолетовых до инфракрасных. К сожалению, атмосфера Земли совершенно не прозрачна для лучей, длина волны которых меньше 290 миллимикрон. Между тем в далеких ультрафиолетовых областях спектра расположены спектральные линии многих химических элементов. Мы их не видим, и поэтому наши сведения о химическом составе небесных тел далеко не полны.
рис.1 Прозрачность земной атмосферы.
В последнее время астрономы пытаются вырваться за границы воздушной оболочки Земли и увидеть космос, в «чистом виде». И это им удается. Высотные ракеты и воздушные шары выносят спектрографы и другие приборы в верхние, весьма разряженные слои атмосферы, и там автоматически фотографируют спектр Солнца.
Начато изучение этим способом и других астрономических объектов.
Другой край «оптического окна» атмосферы упирается в область спектра с длиной волны около микрона. Инфракрасные лучи с большей длиной волны сильно поглощаются главным образом водяными парами земной атмосферы.
Много тысячелетий астрономы изучали Вселенную только через одно узкое «оптическое окно» атмосферы. Они не подозревали что есть еще одно «окно», гораздо более широкое. Оно лежит в области радиоволн.
Левый край «радио окна» отмечен ультракороткими радиоволнами длиной 1,25 см, правый край радиоволнами длиной около 30 м.
Радиоволны длина которых меньше 1,25 см (кроме волн длиной около 8 мм), поглощаются молекулами кислорода и водяных паров. От них есть непрерывный переход к тем электромагнитным волнам, которыми мы называем инфракрасными.
Радиоволны, длина которых больше 30 м, поглощаются особым верхним слоем атмосферы, носящим название ионосферы. Как показывает само название, ионосфера состоит из ионизированных газов, то есть таких газов, атомы которых лишены части своих электронов (которые так же входят в ионосферу).
Для некоторых радиоволн слой ионизированного газа подобен зеркалу — радиоволны отражаются от него как солнечный луч от поверхности воды. Поэтому приходящие волны больше 30 м почти полностью отражаются от ионосферы. Для них Земля является «блестящим шариком» (как для солнечных лучей блестящий игрушечный елочный шар), и пробить ионосферу они не в состоянии.
«Радио окно» гораздо шире «оптического окна». На рисунке 1 по горизонтальной оси отложена так называемая логарифмическая шкала длин, то есть единицы масштаба вдоль этой оси есть единицы степени числа 10. Если же иметь дело с числами, а не с их логарифмами, то ширина «радио окна» (около 30 м) получится почти в десять миллионов раз больше ширины «оптического окна». Таким образом, «оптическое окно» скорее следует считать чрезвычайно узкой щелью, и можно только удивляться, что исследуя Вселенную через такую «щель», мы знаем о ней очень многое.
Естественно ожидать, широко распахнутое в космос «радио окно» покажет нам Вселенную еще более многообразной и сложной.
Если излучение небесного тела по длине волны подходит для «радио окна», оно практически беспрепятственно достигает земной поверхности, и задача астрономов состоит в том, чтобы уловить и исследовать каким-то способом это излучение.
Для этого и созданы радиотелескопы.
3.Радиотелескопы и рефлекторы.
Вспомним, как устроен телескоп-рефлектор. Лучи, посылаемые небесным телом, попадают на вогнутое параболическое зеркало и, отражаясь от его поверхности, собирается в фокусе рефлектора. Здесь получается изображение небесного тела, которое рассматривается через сильную лупу — окуляр телескопа. Маленькое второе зеркало, отражающее лучи в сторону окуляра, имеет чисто конструктивное, а не принципиальное значение.
Роль главного зеркала здесь достаточно ясна. Оно создает изображение небесного тела, и это изображение будет наилучшим в том случае, когда небесное тело находится на продолжении оптической оси телескопа. Телескоп в таком случае направлен прямо на наблюдаемый объект.
Приемником излучения в телескопе-рефлекторе служит человеческий глаз или фотопластинка. Чтобы увеличить угол зрения и подробно рассмотреть изображение светила, приходиться пользоваться промежуточным устройством — окуляром.
Итак, в телескопе-рефлекторе есть собиратель излучения — параболическое зеркало и приемник излучения — глаз наблюдателя или фотопластинка.
По такой же схеме устроен, в сущности, и простейший радиотелескоп (рис.2). В нем космические радиоволны собирает металлическое зеркало, иногда сплошное, а иногда решетчатое.
рис.2 Схема устройства радиотелескопа.
Форма зеркала радиотелескопа, как и в рефлекторе, параболическая. Конечно и здесь сходство не случайное — только параболическая (или, точнее, параболоидная) поверхность способна собрать в фокусе падающее на нее электромагнитное излучение.
Если бы глаз мог воспринимать радиоволны, устройство радиотелескопа могло бы быть неотличимым от устройства телескопа-рефлектора. На самом деле приемником радиоволн в радиотелескопах служит не человеческий глаз или фотопластинка, а высокочувствительный радиоприемник.
Зеркало концентрирует радиоволны на маленькой дипольной антенне, облучая ее. Вот почему эта антенна в радиотелескопах получила название облучателя.
Радиоволны, как и всякое излучение, несут в себе некоторую энергию. Поэтому, падая на облучатель, они возбуждают в этом металлическом проводнике упорядоченное перемещение электронов, иначе говоря, электрический ток. Радиоволны с невообразимой скоростью «набегают» на облучатель. Поэтому в облучателе возникают быстро переменные токи.
Теперь эти токи надо передать на приемное устройство и исследовать. От облучателя к радиоприемнику электрические токи передаются по волноводам — специальным проводникам имеющим, форму полых трубок. Форма сечений волноводов и их размеры могут быть различными.
Космические радиоволны или, точнее, возбужденные ими электрические токи поступили в радиоприемник. Можно было бы, пожалуй, подключив к приемнику репродуктор, послушать «голоса звезд». Но так обычно не делают. Голоса небесных тел лишены всякой музыкальности — не чарующие «небесные мелодии», а режущее наш слух шипение и свист послышались бы из репродуктора.
Астрономы поступают иначе. К приемнику радиотелескопа они присоединяют специальный самопишущий прибор, который регистрирует поток радиоволн определенной длины.
Два типа установок есть не только у рефлекторов, но и у радиотелескопов. Одни из них могут двигаться только вокруг вертикальной и горизонтальной осей. Другие снабжены параллактической установкой — таких, правда, пока меньшинство. Установки радиотелескопов имеют очень важное назначение: как можно точнее нацелить зеркало на объект и сохранить такую ориентировку во время наблюдений.