Космонавтика: Вчера, Сегодня, Завтра

Страница 7

На широко раскинувшемся космодроме располагаются многочисленные здания и сооружения, в каждом из которых производят различные операции по подготовке ракет к старту. На так называемой технической позиции в огромных монтажно-испытательных корпусах проводятся сборка ракет и космических аппаратов, испытания их отдельных систем и комплексные испытания. Здесь же на технической позиции в заправочной и компрессорной станциях космические аппараты заправляются топливом и сжатыми газами, а в зарядно-аккумуляторной станции заряжаются бортовые химические источники тока.

Из монтажно-испытательных корпусов ракеты с установленными на них аппаратами перевозятся на одну из стартовых позиций. Читатель, видимо, не один раз видел это по телевидению или на киноэкранах.

Медленно движется железнодорожный транспортер-установщик. Ракета лежит на подъемной стреле, шарнирно закрепленной на платформе транспортера. Поезд приближается к массивной железобетонной громаде — стартовой позиции космодрома.

Платформа останавливается, и стрела вместе с лежащей на ней ракетой неторопливо поднимается. Вскоре ракета оказывается в вертикальном рабочем положении. И вновь начинаются предстартовые проверки аппаратуры и бортовых систем. Убедившись, что всё работает нормально, в баки ракеты перекачивают горючее и окислитель.

Можно перевозить ракеты из монтажно-испытательного корпуса и в вертикальном положении. Так, например, делают на американском космодроме. Конечно, перевозка «стоя» сопряжена с определенными трудностями. Зато при такой доставке исключается довольно сложная операция подъема ракеты.

Рядом со стоящей ракетой поднимаются решетчатые металлические конструкции. Это кабель-заправочная мачта и башня обслуживания. Башня подходит вплотную к ракете и со всех сторон обхватывает ее площадками, на которые можно выйти из лифта. От кабель-заправочной мачты к ракете протягиваются толстые шланги и жгуты электрических кабелей: последние наземные операции проводятся с использованием энергии от электростанции космодрома.

До старта остаются считанные часы. Чтобы пуск состоялся точно в назначенный срок, график работы соблюдается очень строго. Для этого космодром оснащен точными часами, образующими систему единого времени.

Космонавты занимают свои места в космическом корабле. Начинаются завершающие проверки, теперь уже с участием экипажа.

На космодроме объявляется пятиминутная готовность. Сейчас в командном пункте — подземном бункере сосредоточено все управление ракетой и кораблем. Постоянно поддерживается радиосвязь и телевизионная связь с космонавтами. Но вот от ракеты отводятся башня обслуживания и кабель-заправочная мачта. Пуск! Окрестности оглушает могучий рев двигателей. Из-под ракеты вырывается бушующее пламя. Газоотводные каналы направляют раскаленные газы подальше от пускового сооружения и ракеты. Освобожденная от поддерживающих захватов, она медленно, как бы нехотя отрывается от Земли, а потом стремительно уходит в небо. ПОЛЕТЫ НА МАРС: ВОЗМОЖНОСТИ И ПРОБЛЕМЫ

По данным сайта: http://www.cosmoworld.ru/spaceencyclopedia/hotnews/

Космические инженеры работают над новыми методами исследования других планет Солнечной системы. В стадии разработки находятся автоматические летательные аппараты для изучения Марса, Титана (спутника Сатурна), Венеры и Юпитера. Одним из способов исследования других планет может стать воздушный шар. Воздушные шары, в частности, могут опускать космические аппараты на поверхность. Кроме того, на них может размещаться научное оборудование, например, камеры. Шары способны перемещаться гораздо быстрее и на большие расстояния, нежели наземные машины. По мнению специалистов американской Лаборатории реактивного движения в Пасадене (штат Калифорния), воздушные шары идеально подходят для исследования Марса, Венеры и Титана. Воздушные суда и летательные аппараты, по мнению инженера NASA Энтони Колоцца, должны использоваться в комплексе с наземными и орбитальными аппаратами, дополняя результаты их наблюдений. Одним из преимуществ воздушных аппаратов является возможность непосредственного получения образцов планетарной атмосферы на разных высотах и в разных районах, в частности, для обнаружения биогенных газов. Специалисты NASA уже провели первые испытания воздушного аппарата, который планируется использовать в программе изучения Марса. Уменьшенная модель аппарата Aerial Regional-scale Environmental Survey (ARES) была сброшена с воздушного шара над поверхностью Земли для отработки развертывания и управляемого полета исследовательского аппарата. Колоцца в настоящее время работает над футуристическим насекомообразным аппаратом Entomopter, который предназначен для исследования Марса. Марсианские условия - низкая плотность атмосферы и малая гравитация - позволяют создать аппарат, способный летать при помощи машущих крыльев, подобно насекомому. Такой аппарат сможет перемещаться на малой скорости, приземляться, взлетать и заправляться от наземных аппаратов. Об этом сообщает Compulenta.ru

На другом сайте ставиться под вопрос сама возможность полета человека на Марс http://www.rambler.ru/db/news/msg.html?mid=3036838&s=12:

Основная проблема для полета на Марс - это не двигательные технологии (их уже опробовали на том же Deep Space 1), не деньги (предположительно они есть), а биологическая защита. Лететь придется вне естественного защитного кокона Земли - магнитного поля. Без него частицы 'солнечного ветра' - протоны и ядра гелия, вместо того чтобы 'накрутиться' на магнитную линию и по ней соскользнуть к полюсу образовав полярное сияние, беспрепятственно прошивают пространство . на космическом же корабле просто нет защитного поля такой протяженности как земное! Знаете, какой толщины стенка наших модулей "Заря" и "Звезда"? ДВА МИЛЛИМЕТРА. Конечно, с внешней стороны она прикрыта теплоизоляцией из многослойного лавсана и дополнительно - тонкими противометеоритными экранами, тем не менее никакой защиты от радиации она не дает. Американцы экспериментируют на своих модулях с дополнительной полиэтиленовой защитой . но результат оказался значительно хуже ожидаемого - такой экран толщиной в 10 сантиметров ослабляет радиационный поток всего на 20%. МКС, надо сказать, летает еще внутри внутреннего радиационного пояса (который как раз представляет собой 'пойманный' солнечный ветер, еще не 'скатившийся' к тому или другому полюсу), который начинается примерно с 500-600 километров над поверхностью планеты.

Но это еще цветочки. При полете на Марс вес конструкции будут экономить значительно сильнее чем на МКС - на лунном модуле "Аполлона" толщина обшивки была такой, что ее можно было ПРОТКНУТЬ ПАЛЬЦЕМ. Ну, естественно, она была подкреплена силовым каркасом и надута изнутри давлением чистого кислорода в треть атмосферы . но от вакуума астронавтов отделяли десятые миллиметра - толщина бритвенного лезвия.

В то в время как для создания традиционными способами защиты эквивалентной земному магнитному полю плюс земная атмосфера пришлось бы применить чередующиеся слои свинца (для поглощения гамма и бета) и полиэтилена (альфа и протонов) толщиной в 10-15 метров. То есть долететь до Марса можно. Это даже обойдется дешевле программы "Аполлон" - мы сейчас значительно лучше знаем, как уменьшить затраты на самом дорогом этапе - выводе на околоземную орбиту, но это будет дорога в один конец. Даже если лететь при 'спокойном Солнце', все равно за полет космонавты получат смертельную дозу радиации. И защититься мы от нее пока не умеем.

Для программы "Аполлон" это не имело значения - экипаж находился вне защиты магнитного поля Земли всего несколько суток. Но самый 'быстрый' маршрут полета на Марс предусматривает почти два года полета для экипажа. Для корабля - все три. Человек способен столько прожить в невесомости, как доказал Поляков, проведя 600 с лишним дней на станции "Мир". Но это на низкой орбите, под защитой земного магнитного поля. По дороге к Марсу его не будет. В принципе, если используется электрореактивный двигатель (а питается он от двух солнечных батарей размером 400x400 метров и мощностью в сотни мегаватт или аналогичного по мощности ядерного реактора) -электроэнергии на борту есть сколько угодно. Можно ее использовать для создания собственного магнитного поля, напоминающего земное. Но такое поле должно быть значительно более напряженным, чем земное - настолько же более напряженным, насколько оно меньше. Диаметр Земли - 12000 километров. Диаметр обитаемого отсека, который должен быть защищен полем - 12 метров. Разница в миллион раз. Реализуемо . но может быть более опасным для экипажа, чем радиационное поражение. Да, такое магнитное поле притянет все железоникелевые микрометеориты в радиусе нескольких кил