Аварийно-спасательные средства сверхзвуковых самолетов
Аварийно-спасательные средства сверхзвуковых самолетов
В с т у п л е н и е
Аварийные ситуации в современной авиации возникают достаточно ред- ко , прежде всего благодаря высокой надежности летательных аппаратов, хорошей подготовке экипажей и тщательной работе наземных технических служб. Несмотря на это, иногда происходят аварии самолетов например, вследствие отказа силовой установки, нехватки топлива, возникновения по- жара на самолете, неисправности системы управления, потери пилотом ориентации в пространстве, из-за исключительно неблагоприятных метеорологических условий и т.п. Кроме того, военные самолеты постоянно подвергаются опасности оказаться в аварийной ситуации в результате действий противника.
К наиболее неблагоприятным относятся быстротечные аварии, когда время, которым располагает экипаж для того чтобы покинуть самолет или произвести вынужденную посадку, невелико. Поэтому спасательные средства экипажей должны обеспечивать безопасность не только в любой ситуации, но и в любой момент времени.
В первом двадцатилетии развития авиации экипаж практически не располагал каким-либо спасательным средством, позволяющим покинуть самолет в воздухе. Во втором двадцатилетии единственным средством такого рода был парашют. В случае аварии летчик покидал самолет таким образом: отстегивал ремни, открывал фонарь, выходил из кабины и прыгал с крыла. После непродолжительного свободного полета летчик открывал парашют и приземлялся. С ростом скорости и высоты полета такой способ становился непригодным по многим причинам.
Во-первых, с увеличением скорости полета значительно возрастает сила аэродинамического сопротивления. Например, при скорости полета 600 км/ч на тело летчика, высунувшегося только наполовину из кабины самолета, действует сила около 4,4 кН ( 450 кГ ). Величина силы пропорциональна квадрату скорости, поэтому повышение скорости, например, до 1200 км/ч приводит к четырехкратному увеличению силы без учета дополнительного волнового сопротивления. В таких условиях выход из кабины самолета превышает физические возможности человека.
Вторым фактором, затрудняющим покидание самолета с парашютом, является большое различие между скоростью самолета и резко уменьшающейся скоростью парашютиста в результате торможения набегающим потоком. Поток подхватывает парашютиста и быстро уносит назад, что грозит столкновением с хвостовым оперением или другими частями самолета.
Третья опасность кроется в неблагоприятном действии воздушного потока большой скорости на незащищенные участки тела, вызывающим повреждение внешних и внутренних органов и т.п.
Другие опасности связаны с необходимостью покидать самолет на очень большой или очень малой высоте. В первом случае возникает неблагоприятное действие на человека очень низких давления и температуры, вследствие чего возникает кислородное голодание и нарушается тепловое равновесие организма. На малой высоте, особенно при движении самолета по земле ( или по палубе корабля ), не хватает промежутка времени и расстояния для раскрытия и наполнения купола парашюта, т.е. для уменьшения скорости падения до допустимой величины.
Практически установлено, что покидать с парашютом самолет, летящий со скоростью более 600 км/ч на высоте, меньшей 300 метров, без специальных средств небезопасно или просто невозможно с учетом физических данных человека. По этой причине конструкторы разработали специальные технические средства, позволяющие покидать околои сверхзвуковые самолеты в любых условиях и на любых этапах полета, т.е. во всем используемом диапазоне скоростей и высот.
Первым средством такого рода являлось выбрасываемое сидение, позволяющее летчику покидать самолет с помощью катапультирования. Первые применявшиеся катапультируемые сидения обеспечивали возможность безопасно покидать самолет только при ограниченной скорости и высоте, поэтому для сверхзвуковых самолетов было создано более сложное оборудование. К нему относятся спасательные капсулы и отделяемые кабины, в которых можно покидать самолет, сохраняя безопасность в любых условиях полета. Они нашли применение исключительно в сверхзвуковых самолетах.
Катапультируемое сидение
Катапультируемое сидение по сравнению с обычным, неподвижно закрепленным в самолете снабжено направляющими и приводом, позволяющим выбрасывать сидящего человека (вместе с креслом) на определенную высоту над траекторией полета самолета. В первых устройствах такого рода движение вдоль направляющих происходило под действием сжатых газов, подаваемых в цилиндр (скрепленный с самолетом), которые, действуя на поршень, (скрепленный с сидением), придавали сидению и летчику определенную скорость относительно самолета.
После катапультирования сидение с летчиком движется по траектории, форма которой зависит от скорости полета самолета в момент катапультирования, скорости катапультирования сидения, а также от катапультируемой массы (сидение с летчиком) и от ее аэродинамических характеристик. Параметры конструкции кресла и его привода должны обеспечивать после катапультирования скорость движения,достаточную для того чтобы миновать заднюю часть самолета на безопасном растоянии. Высота катапультирования уменьшается с увеличением скорости полета и возрастет с увеличением начальной скорости катапультирования. Скорость катапультирования зависит от величины хода поршня в цилиндре, характеристик катапульты и допустимого значения перегрузки, действующей на человека.
Ограниченные габариты кабины экипажа и, следовательно, небольшой допустимый ход поршня повлияли на то, что первые катапульты снабжались приводом (обычно это был порохвой заряд, реже баллон сжатого воздуха), который на коротком промежутке пути сообщал человеку перегрузку 18-20, т.е. максимально допустимую с физиологической точки зрения. С помощью сидений такого типа можно было безопасно покидать самолет, летящий со скоростью, не превышающей 900-1100 км/ч. Авария на самолете, летящим с большой скоростью требовала от экипажа уменьшения ее до такой, при которой можно безопасно покидать кабину. Случаи, в которых это было невозможно из-за повреждения самолета могли закончится трагически.
В 1955 году произошли две аварии, которые снова обратили внимание на проблему покидания самолета, летящего со сверхзвуковой скоростью. В обеих случаях катапультирование произошло во время крутого пикирования с резко возрастающей скоростью, причиной которого явилась потеря управляемости, вызванная аэродинамической блокировкой руля высоты.
В первом случае воздушный поток сорвал с пилота перчатки, шлемофон и кислородную маску, а первый удар потока в лицо вызвал появление синяков под глазами. Во втором случае, произошедшем на самолете F-100A, на пилота действовала тормозящая сила воздуха, создавая отрицательную перегрузку около 40 и динамическое давление порядка 600 кПа. Воздушный поток сорвал с пилота ботинки, носки, шлем, кислородную маску и перчатки, а также кольцо и наручные часы, разорвал нос, губы и веки. Все тело имело сильные ушибы, а внутренние органы, особенно сердце и печень, повреждены.
Вследствие проведенных исследований конструкция катапультируемого кресла претерпела существенные изменения, благодаря которым сначала была повышена безопасность покидания самолета, летящего с большой скоростью, а затем безопасность при взлете и посадке. К наиболее важным конструктивным усовершенствованиям относятся:
совмещение в одном рычаге откидывания фонаря и катапультирования с одновременным автоматическим фиксированием ног и рук в необходимом положении. В креслах первоначальной конструкции катапультирование наступало после натягивания на лицо обеими руками матерчатого предохранителя, а после введения шлемов со щитками из органического стекла-нажатием рычага, расположенного в подлокотнике кресла или между бедрами. В новых катапультируемых креслах пилот выполняет только одно действие-подает команду исполнительному механизму, который притягивает ноги к креслу и фиксирует их, прижимает локти к туловищу, выбирает зазоры в ремнях, удерживающих пилота в кресле, фиксирует голову и сбрасывает фонарь (или открывает аварийный люк), а через 1-2 секунды приводит в действие катапульту;