Классификация звезд

Страница 2

Не менее важны для классификации, абсолютная величина и светимость. Видимая величина звёзд зависит от двух причин – от её силы света (светимости) и от того расстояния, на котором она находится. Для того чтобы можно было сравнить силы света или светимости звёзд, надо привести видимые звёздные величины к одному и тому же расстоянию. За такое расстояние по международному соглашению принято расстояние в 10 парсеков.

Видимая звёздная величина, которую имела бы данная звезда на расстоянии 10 парсеков, называется её абсолютной величиной (М).

Отношение блеска звезды к блеску Солнца на одном и том же расстоянии называется светимостью звезды (L).

Если сравнивать данные об абсолютных величинах и светимостях некоторых звезд можно отметить, что их светимость колеблется в очень широких пределах от 1/45000 до 330000 L. Солнце (М = +4,9, L=1) является средней звездой не слишком яркой и не слишком слабой.

Очень многое, дало изучение спектров звезд. По спектру определяют, из каких элементов состоит атмосфера, получают сведения о температуре, величине, плотности, вращении вокруг оси и многом другом.

Главнейшей характеристикой классификации является различная степень ионизации элементов, зависящая от температур. В горячих голубых звёздах с температурой свыше 10-15 тыс. кельвинов большая часть атомов ионизована, так как лишена электронов. Полностью ионизованные атомы не дают спектральных линий, поэтому в спектрах таких звёзд линий мало. Самые заметные принадлежат гелию. У звёзд с температурой 5-10 тыс. кельвинов (к ним относится Солнце) выделяются линии водорода, кальция, железа, магния и ряда других металлов. Наконец, у более холодных звёзд преобладают линии металлов и молекул, выдерживающих высокие тем­пературы (например, молекул окисититана).

В начале ХХ в. в Гарвардской обсерватории (США) была разработана спектральная классификация звёзд. Основные классы в ней обозначаются латинскими буквами (О, В, А, F, G, К, М), они отличаются набором наблюдаемых линий и плавно переходят один в другой. Вдоль этой последовательности уменьшается температура звёзд и меняется их цвет от голубого к красному. Звёзды, относящиеся к классам О, В и А, называют горячими или ранними, F и G – солнечными, К и М – холодными или поздними. Для более точной характеристики каждый класс разделён ещё на 10 подклассов, обозначаемых цифрами от 0 до 9, которые ставятся после буквы (например, Солнце G2). Таким образом, получается плавная последовательность подклассов.

По размерам звезды делятся на карликов и гигантов. Самые маленькие звезды, наблюдаемые в оптических лучах – белые карлики – имеют в диаметре несколько тысяч километров. Размеры же наиболее крупных, красных сверхгигантов, сопоставимы с орбитами Сатурна.

Спектральная классификация легла в основу диаграммы спектр-светимость (Герцшпрунга-Рассела). В ней по горизонтальной оси откладываются спектральные классы по вертикальной – абсолютные величины звезд (рис 1).

Рассматривая эту диаграмму, мы видим, что звезды разбросаны по ней неравномерно: преобладающее число их расположено по направлению от левого верхнего края, где сосредоточены голубые горячие звезды высокой светимости, к правому нижнему, занимаемому слабосветящимися красными звездами. Это так называемая главная последовательность – включает в себя 90% всех наблюдаемых звезд (в т.ч. и Солнце). Она претерпевает разрыв в области спектрального класса G и делится, на две части. Вторая группа звезд, менее четко выраженная, располагается у спектральных классов G, К и М, немного ниже абсолютной величины 0. Это звезды-гиганты. Выше лежат звезды большой отрицательной абсолютной величиной, т. е. очень яркие звезды – сверхгиганты. Если посмотреть, как распределены звезды класса М, т.е. холодные звезды, то здесь бросается в глаза их неравномерное распределение: среди этих звезд имеются, либо очень яркие звезды-гиганты, либо очень слабые звезды-карлики, а средних по размерам звезд вовсе не имеется.

Рисунок 1 – Диаграмма Герцшпрунга-Рассела

Если переходить от класса М к классам F и G, то расстояние между гигантами и главной последовательностью уменьшается. Под главной последовательностью располагается последовательность субкарликов. В левом верхнем углу по вертикали – «бело-голубая» последовательность. Небольшое число звезд расположено отдельно около левого нижнего угла, это белые карлики.

Весьма интересен вопрос о том, каких звезд в нашей Галактике больше: гигантов или карликов. Если произвести подсчет звезд, видимых нами на небе, то окажется, что громадное число – это гиганты. Но если мы сделаем подсчет звезд ближайших окрестностей Солнца в объеме шара радиусом в 4 парсека, то окажется, что в этом объеме будет находиться минимум гигантов, остальные все карлики. Такое несоответствие вполне понятно, так как карлики могут быть видны только в самых ближайших окрестностях Солнца, а гиганты могут быть видны на самых громадных расстояниях.

По анализу спектральных линий можно вычислить скорость вращения звезд. У некоторых звезд скорость вращения на экваторе достигает 250 км/с, скорость вращения Солнца 2 км/с.

Другой классификационной характеристикой является линейный диаметр звезд. По своим диаметрам звезды весьма разнообразны: отношение самого большого из известных радиусов к самому малому составляет около 290000.

3. ДВОЙНЫЕ И ПЕРЕМЕННЫЕ ЗВЕЗДЫ

Двойными звездами называются пары звезд, находящиеся на очень близком угловом расстоянии друг от друга.

Различают две группы двойных звезд: оптические и физические. Оптические (визуально-двойные) представляют собой просто случайное соединение двух звезд на одном и том же луче зрения. На самом же деле они могут быть удалены друг от друга на многие парсеки. С течением времени они разойдутся настолько, что не будут представлять собой двойной звезды.

Физические двойные звезды представляют собой пары звезд, которые фактически находятся близко одна от другой и которые связаны в физические системы взаимным тяготением. Эти звезды представляют большой интерес, так как дают много важного материала для познания природы звезд. Если звезд более двух, то говорят о т.н. кратных системах. Физически двойные звезды бывают спектрально-двойные и затменные (см. ниже). Спектрально-двойными называются звезды, двойственность которых обнаруживается исключительно при помощи спектрального анализа.

Переменные звёзды разделяются на два основных класса: затменные переменные и физические переменные. К первому классу относятся такие переменные, изменение блеска которых происходит, вследствие затмений одной звезды другой и создании при этом различных геометрических эффектов. Затменные переменные есть вместе с тем и двойные звезды (не путать с оптическими двойными, находящимися на большом расстоянии друг от друга). Характерным представителем этого типа звезд является Алголь в созвездии Персея.

Переменные звезды, у которых изменение блеска обусловливается внутренними процессами, происходящими в самих звездах, называются физическими переменными. Первая переменная открыта еще в 1595 г. – Дивная Кита, амплитуда колебания ее блеска от 2 до 9 звездных величин.

Физические переменные разделяются на следующие основные классы:

1. Пульсирующие звезды – их яркость меняется из-за колебания размеров. Среди пульсирующих звезд выделяют:

· цефеиды – молодые переменные, имеющие правильную кривую изменения блеска. Это звезды высокой светимости и умеренной температуры – желтые сверхгиганты. Периоды изменения блеска цефеид колеблются в широких пределах от 80 мин. до 45 суток. Долгопериодическими цефеидами называются такие, у которых периоды больше одних суток, короткопериодическими – меньше одних суток;

· мириды – красные гиганты, меняющие блеск на несколько звездных величин, с периодами в среднем от нескольких месяцев до полутора лет;

· пульсирующие типа RR Лиры – самые старые звезды, встречаются в шаровых звездных скоплениях, возраст которых свыше 12 млрд. лет.