Метеоры, болиды и методы их наблюдения

Страница 2

Однако итог был плачевным и принес полнейшее разочарование. Небо было спокойно, как в обычные ноябрьские ночи, с привычным сверканием звезд. Проведенные тут же по «горячему следу» вычисления показали, что ориентация орбиты Леонид в пространстве действительно изменилась и в дату предполагаемого метеорного дождя Земля находилась на расстоянии более 2 миллионов километров от средней орбиты роя. Таким образом, все подготовительные хлопоты оказались напрасными, а это всегда раздражает, вызывает чувство досады и даже гнева. Престижу астрономии был нанесен сильнейший удар.

Интерес к метеорам стал резко падать. Лишь астрономы-любители, вдохновляемые не столько научной перспективой, сколько доступностью наблюдений, поддерживали слабый огонек в очагах метеорных исследований. И даже в начале ХХ века уровень этих исследований продолжал оставаться любительским. Известный специалист по Солнечной системе Б.Ю. Левин связывал это с бурным развитием астрофизики, когда появление новой наблюдательной техники и широкое привлечение физики к объяснению процессов в звездах создали новое поле деятельности для профессиональных астрономов.

Столь резкая миграция умов, полное опустошение высших эшелонов исследователей, обеспечивающих идейный и технический прогресс метеорной науки, превратили ее практически в слабосвязанную сеть кустарей-одиночек, занимающихся в основном повторением пройденного.

Ситуация изменилась лишь в 20-х гг., когда с развитием авиации и метеорологии возникла необходимость детального исследования земной атмосферы, в том числе ее верхних слоев. Как известно, физическое состояние газа зависит от некоторых важнейших характеристик, таких как температура, плотность, давление. В те, в общем-то, уже далекие времена сведения об этих характеристиках на высотах 60 – 120 км можно было получить, лишь систематически наблюдая метеоры. Никаких других возможностей просто не существовало. Все существующие тогда летательные аппараты и приспособления в принципе не могли достичь таких высот, ракет тогда еще не было. Попытки вывести простейшие математические соотношения, связывающие параметры атмосферы с данными наблюдений, способствовали разработке основ физической теории метеоров.

В те годы основным методом наблюдений все еще оставался визуальный метод (иногда с применением телескопа для наблюдений очень слабых метеоров), дающий наглядное представление об изучаемом объекте, но страдающий низкой точностью. В самом деле, человек не электронно-вычислительная и не электронно-копировальная машина. Заметив метеор, он не может в то же мгновение нанести «синхронно» его траекторию на звездную карту. Все это он сделает уже после того, как метеор погаснет. Обычно все явление метеора длится доли секунды. И, конечно, отыскав на карте необходимые созвездия, наблюдатель наносит на нее весьма приблизительную траекторию. Еще сложнее задача оценить блеск метеора. Обычно это делается путем сравнения с блеском других звезд. Здесь субъективизм оценок достигает еще большей степени, чем при нанесении траектории на карту. Метеор-то уже исчез, и вы фактически производите сопоставление по памяти. Но это скорее эмоциональный способ, нежели действительно научный.

Конечно же, это прекрасно понимали профессиональные астрономы, приток которых освежил совсем было захиревшее направление. Нужен был инструментальный способ регистрации метеоров. И такой способ в других, более прогрессивных областях астрономии уже давно царствовал. Речь идет о фотографии. В 30-х годах в разных странах начали создаваться необходимые наблюдательные средства, организовывались фотографические наблюдения с двух пунктов, удаленных друг от друга, что позволяло методом триангуляции определять высоты фотографируемых метеоров. В начале 40-х годов были проведены наблюдения метеоров с помощью радиолокаторов.

После окончания второй мировой войны фотографический и радиолокационный методы получили самое широкое распространение и на сегодняшний день все еще являются самыми основными методами наблюдения метеоров.

В настоящее время успешно развиваются электроннооптические и телевизионные методы наблюдения слабых метеоров, предпринимаются активные попытки изучать метеорное вещество на основе взаимодействия метеороидов со специальными датчиками, установленными на космических аппаратах.

1.2 Подробнее о метеорах

Метеоры и метеориты чрезвычайно занимательны с нескольких точек зрения и вполне стоят того, чтобы уделить им побольше внимания.

Во-первых, метеориты – это единственные небесные тела, которые попадают в наши руки. Лишь их состав и строение мы можем изучать непосредственно, можем трогать, измерять, дробить, анализировать, изучать так же, как мы изучаем все земные предметы. Остальные небесные тела мы изучаем косвенными путями, наблюдая их видимые положения и движения, анализируя их свет. Результаты такого изучения для неспециалиста часто кажутся недостоверными и потому не вполне его удовлетворяют, хотя в действительности многие из этих данных гораздо достовернее, чем наши представления о некоторых частях поверхности нашей собственной планеты, например, об арктических областях или дебрях Центральной Африки.

Другое обстоятельство, благодаря которому метеоры и метеориты привлекают наше внимание, - это то, что они тесно связаны с рядом других небесных образований: с кометами, астероидами, с зодиакальным светом и с солнечной короной, с так называемыми темными туманностями в межзвездном пространстве, а также с образованием рельефа поверхности некоторых небесных тел, включая отчасти и нашу Землю.

Наконец, изучение метеоров и метеоритов мы можем рассматривать как средство для изучения высоких слоев земной атмосферы, которые так интересуют и ученых, и самолетостроителей, и радистов, и даже артиллеристов, но которые до недавнего времени были недоступны для непосредственного изучения.

Что же нас интересует при изучении метеоров, что подлежит определению из наблюдений?

Высота точек появления и исчезновения метеоров над земной поверхностью, скорость их движения и ее изменения, зависимость этих величин от яркости метеоров и их связь друг с другом, число метеоров в разные часы суток и в течение года, распределение их по яркости и по величине, их путь в пространстве до встречи с Землей…

Один из крупнейших советских «ловцов» падающих звезд И.С. Астапович зарегистрировал за 15 лет своей работы около 40000 метеоров.

Наблюдать метеоры с пользой для науки может каждый, потому что большинство наблюдений метеоров производится невооруженным глазом и не требует особых знаний. Даже и инструменты для наблюдения метеоров в большинстве случаев могут быть так просты и скромны, что располагать ими может каждый любитель науки о небе.

Выдающуюся роль в науке о метеорах сыграли любители астрономии, такие, как Деннинг в Англии. В СССР целая организация любителей астрономии в составе Всесоюзного астрономо-геодезического общества занималась наблюдением метеоров. Эта организация играла большую роль в развитии знаний о метеорах и располагала обширным архивом наблюдений. Такие организации существуют и за рубежом. Метеоры интенсивно изучаются в обсерваториях Чехии, США.

Вторгаясь в земную атмосферу, метеороиды взаимодействуют с молекулами воздуха. Степень этого взаимодействия и его последствия во многом зависят от скорости метеороида.

Скорости входа метеороидов в земную атмосферу заключены в интервале 11,2 – 72 км/с. Причем предельные Скорость убегания скоростей метеороидов определяются так называемой скоростью убегания с Земли и из Солнечной системы (иначе говоря, с соответствующей второй космической скоростью). Скорость убегания с Земли равна 11,2 км/с, и ни один метеороид не может войти в земную атмосферу, имея скорость относительно движения Земли меньше, чем эта. Скорость убегания из Солнечной системы на расстоянии Земли от Солнца равна 42 км/с. Но поскольку скорость орбитального движения Земли вокруг Солнца составляет примерно 30 км/с, то, естественно, максимально возможная скорость относительно Земли у встречного метеороида равна приблизительно 72 км/с. Это очень большая скорость: если переведем ее в более привычные для нас единицы – км/ч, то получим фантастическую скорость – почти 260000 км/ч.