Основные понятия космической геодезии и астрономии
Основные понятия космической геодезии и астрономии
СОДЕРЖАНИЕ КОНТРОЛЬНОЙ РАБОТЫ
Введение
1 Небесные координаты
2 Теории движения небесных тел
3 Методы космической геодезии
Заключение
Список использованной литературы
ВВЕДЕНИЕ
Искусственные спутники открыли новую эру в науке об измерении Земли — эру космической геодезии.
Они внесли в геодезию новое качество — глобальность; благодаря большим размерам зоны видимости поверхности Земли со спутника значительно упростилось создание геодезической основы для больших территорий, так как существенно сократилось необходимое количество промежуточных этапов измерений. Так, если в классической геодезии среднее расстояние между определяемыми пунктами составляет 10—30 км, то в космической геодезии эти расстояния могут быть на два порядка больше (1—3 тыс. км). Тем самым упрощается передача геодезических данных через водные пространства. Между материком и островами, рифами, архипелагами геодезическая связь может быть установлена при прямой их видимости со спутника непосредственно через него, без каких-либо промежуточных этапов, что способствует более высокой точности построения геодезической сети.
Космическая геодезия – научная дисциплина, в которой для решения научных и практических задач геодезии используются результаты наблюдений искусственных и естественных небесных тел.
В соответствии с этим в предмет изучения в рамках космической геодезии входят:
- Теории движения небесных тел;
- Разработка способов определения орбит небесных тел (прямая задача) и вычисления эфемерид (обратная задача);
- Обоснование требований к геодезическим спутникам в отношении параметров их орбит и состава бортовой аппаратуры;
- Обоснование требований к расположению станций наблюдения и их аппаратурного оснащения;
- изучение методов наблюдений и теории математической обработки наблюдений;
- интерпретация результатов наблюдений и их обработки.
Основными задачами космической геодезии являются:
ü Определение положений и изменений со временем координат наземных пунктов;
ü Изучение внешнего гравитационного поля и его изменений со временем;
ü Уточнение некоторых астрономических постоянных.
При всей глобальности вопросов, охватываемых космической геодезией, автор данной работы поставила перед собой весьма скромную цель:
Рассмотреть основные понятия, без которых дальнейшее углубление в эту науку не представляется возможным.
НЕБЕСНЫЕ КООРДИНАТЫ
При решении задач космической геодезии приходится использовать различные системы координат, отличающиеся между собой:
- расположением начала (например, планетоцентрические, геоцентрические, квазигеоцентрические (референцные) и т.д.;
- ориентированием основной плоскости (например, экваториальные, горизонтальные, орбитальные);
- ориентацией начальной плоскости (например, гринвичские, равноденственные);
- видом координатных систем (прямоугольные, полярные, цилиндрические, и т.д.).
Что же такое небесные координаты и небесная сфера?
Небе́сная сфе́ра — воображаемая вспомогательная сфера произвольного радиуса, на которую проецируются небесные светила: служит для решения различных астрометрических задач. За центр небесной сферы, как правило, принимают глаз наблюдателя. Для находящегося на поверхности Земли наблюдателя вращение небесной сферы воспроизводит суточное движение светил на небе. Площадь небесной сферы с учетом непостоянства значения размеров дуги равных склонений составляет 41252.96 кв. градусов.
Представление о Небесной сфере возникло в глубокой древности; в основу его легло зрительное впечатление о существовании куполообразного небесного свода. Это впечатление связано с тем, что в результате огромной удалённости небесных светил человеческий глаз не в состоянии оценить различия в расстояниях до них, и они представляются одинаково удалёнными. У древних народов это ассоциировалось с наличием реальной сферы, ограничивающей весь мир и несущей на своей поверхности многочисленные звёзды. Таким образом, в их представлении небесная сфера была важнейшим элементом Вселенной. С развитием научных знаний такой взгляд на небесную сферу отпал. Однако заложенная в древности геометрия небесной сферы в результате развития и совершенствования получила современный вид, в котором и используется в астрометрии.
Радиус небесной сферы может быть принят каким угодно: в целях упрощения геометрических соотношений его полагают равным единице. В зависимости от решаемой задачи центр небесной сферы может быть помещен в место:
· где находится наблюдатель (топоцентрическая небесная сфера),
· в центр Земли (геоцентрическая небесная сфера),
· в центр той или иной планеты (планетоцентрическая небесная сфера),
· в центр Солнца (гелиоцентрическая небесная сфера) или в любую др. точку пространства.
Каждому светилу на небесной сфере соответствует точка, в которой её пересекает прямая, соединяющая центр небесной сферы со светилом (с его центром). При изучении взаимного расположения и видимых движений светил на небесной сфере выбирают ту или иную систему координат, определяемую основными точками и линиями. Последние обычно являются большими кругами небесной сферы. Каждый большой круг сферы имеет два полюса, определяющиеся на ней концами диаметра, перпендикулярного к плоскости данного круга.
На рисунке изображена небесная сфера, которая соответствует месту наблюдения, расположенному в некоторой точке земной поверхности с широтой f. Отвесная (вертикальная) линия, проведённая через центр этой сферы, пересекает небесную сферу в точках Z и Z', называемых соответственно зенитом и надиром. Плоскость, проходящая через центр небесной сферы перпендикулярно отвесной линии, пересекает сферу по большому кругу NESW, называемому математическим (или истинным) горизонтом. Математический горизонт делит небесную сферу на видимую и невидимую полусферы; в первой находится зенит, во второй — надир. Прямая, проходящая через центр небесной сферы параллельно оси вращения Земли, называемой осью мира, а точки пересечения её с небесной сферой — Северным Р и Южным P' полюсами мира. Плоскость, проходящая через центр небесной сферы перпендикулярно оси мира, пересекает сферу по большому кругу AWA'E, называется небесным экватором. Из построения следует, что угол между осью мира и плоскостью математического горизонта, а также угол между отвесной линией и плоскостью небесного экватора равны географической широте места наблюдений. Большой круг небесной сферы, проходящий через полюсы мира, зенит и надир, называется небесным меридианом.
Из двух точек, в которых небесный меридиан пересекается с математическим горизонтом, ближайшая к Северному полюсу мира N называется точкой севера, а диаметрально противоположная S — точкой юга. Прямая NS, проходящая через эти точки, есть полуденная линия. Точки горизонта, отстоящие на 90° от точек N и S, называются точками востока Е и запада W. Точки N, Е. S, W называются главными точками горизонта. По диаметру EW пересекаются плоскости математического горизонта и небесного экватора.
Большой круг небесной сферы, по которому происходит видимое годичное движение центра Солнца, называется эклиптикой
Плоскость эклиптики образует с плоскостью небесного экватора угол e = 23°27'. Эклиптика пересекает экватор в двух точках, одна из которых —точка весеннего равноденствия (в ней Солнце при видимом годичном движении переходит из Южного полушария небесной сферы в Северное), а другая, диаметрально противоположная ей, — точка осеннего равноденствия. Точки эклиптики, отстоящие на 90° от точек весеннего и осеннего равноденствия, называется точками летнего и зимнего солнцестояния (первая — в Северном полушарии небесной сферы, вторая — в Южном). Большой круг небесной сферы, проходящий через полюсы мира и точки равноденствия, называется колюром равноденствий; большой круг небесной сферы, проходящий через полюсы мира и точки солнцестояния, — колюром солнцестояний. Прочерченные на звёздной карте, эти круги отсекают хвосты у древних изображений созвездий Большой Медведицы (колюр равноденствий) и Малой Медведицы (колюр солнцестояний), откуда и происходит их название (греч. kуluroi, буквально — с обрубленным хвостом, от kуlos — обрубленный, отсеченный и ига — хвост).