Группы мышц у животных
Страница 2
даются импульсами, которые поступают по волокнам двигательных нейро-
нов (мотонейронов), находящихся в передних рогах спинного мозга или
в ядрах черепномозговых нервов.
В зависимости от количества концевых разветнлений нервное волокно
образует синаптические контакты с болыыим или меньшим числом мышечных
волокон.
Мотонейрон, его длинный отросток (аксон) и группа мышечных волокон,
иннервируемых зтим аксоном, составляют двигательную, или нейромоторную,
единицу .
Чем более тонка, специализированна в работе мышца, тем меньшее количество
мышечных волокон входит в нейромоторную единицу. Малые двигвтельные
единицы включают лишь 3 - 5 волокон (например, в мышцах глазного яблока,
мелких мышцах лицевой части головы), большие двигательные единицы - до
волонно (аксон) нескольких тысяч волокон (в крупных мышцах туловища и
конечностей). В большинстве мышц двигательные единицы соответствуют
первичным мышечным пучкам, каждый из которых содержит от 20 до 60
мышечных волокон. Двигательные единицы различаются не только числом
волокон, но и размером нейронов - большие двигательные единицы включают
более крупный нейрон с относительно более толстым аксоном.
Нейромоторная единица работает как единое делое: импульсы,
исходящие от мотонейрона, приводят в действие мышечные волокна.
Сокращению мышечных волокон предшествует их злектрическое возбуж-
дение, вызываемое разрядом мотонейронов в области концевых пластинок.
Возникающий под влиянием медиатора потенциал концевой
пластинки (ПКГ1), достигнув порогового уровня (сколо - 30 мВ), вызывает
генерацию потенциала действия, распространяющегося в обе стороны вдоль
мышечного волокиа.
Возбудимость мышечных волокон ниже возбудимости нервных волокон,
иннервирующих мышцы, хотя критический уровень деполяризации мембран
в обоих случаях одинаков. Это объясняется тем, что потенциал покоя мышеч-
ных волокон выше (около - 90 мВ) потенциала покоя нервных волокон
( - 70 мВ). Следовательно, для возникновения потенциала действия в мы-
шечном волокне необходимо деполяризовать мембрану на большую величину,
чем в нервном волокне.
Длительность потенциала действия в мышечном волокне составляет
5 мс (в нервном соответственно 0,5 - 2 мс), скорость проведения возбуж-
дения до 5 м/с (в миелинизированных нервных волокнах - до 120 м/с).
Молекулярные механизмы сокращения. Сокращение - это изменение
механического состояния миофибриллярного аппарата мышечных волокон
цод влиянием нервных ампульсов. Внешне сокращение проявляется в изме-
нении длины мышцы или степени ее напряжения, или одновременно того
и другого.
Согласно лринятой «теории скольжения» в основе сокращения лежит
взаимодействие между актиновыми и миозиновымй нитями миофибрилл
вследствие образования поперечных мостиков между ними. В результате
происходит «втягивание» тонких актиновых миофиламентов между миози-
новыми.
Во время скольжения сами актиновые и миозиновые нити не укора-
чиваются; длина А-дисков также остается прежней, в то время как 3-диски
и Н-зоны становятся более узкими. Не меняется длина нитей и при растя-
жении мышцы, уменьшается ли~иь степень их взаимного перекрывания.
Эти движения основаны на обратимом изменении конформации концевых
частей молекул миозина (поперечных выступов с головками), при котором
связк между толстым филаментом миозина и тонким филаментом актина
образуются, исчезают и возникают вновь.
До раздражения или в фазе расслабления мономер актина недоступен
для взаимодействия, так как этому мешает комплекс тропонина и определен-
ная конформация (подтягивание к оси филамента) концевых фрагментов
молекулы миозина.
В основе молекулярного механизма сокращения лежит процесс так
называемого электромеханического сопряжения, причем ключевую роль
в процессе взаимодействия миозиновых и актиновых миофиламентов играют
ионы Са++, содержащиеся в саркоплазматическом ретикулуме. Это подтвер-
ждается тем, что в эксперименте при инъекции кальция внутрь волокон
возникает их сокращение.
Возникший потенциал распространяется не только по поверхностной
мембране мышечного волокна, но и по мембранам, выстилаюшим попе-
речные трубочки (Т-систему волокна). Волна деполяризации захватывает
расположенные рядом мембраны цистерн саркоплазматического ретикулума,
что сопровождается активацией кальциевых каналов в мембране и выходом
ионов Са++ в межфибриллярное пространство.
Влияние ионов Са+ + на взаимодействие актина и миозина опосред-
ствовано тропомиозином и тропониновым комплексом которые локализованы
в тонких нитях и составляют до 1/3 их массы. При связывании ионов Са++
с тропонином (сферические молекулы которого «сидят» на цепях актина)
последний деформируется, толкая тропомиозин в желобки между двумя
цепями актина. При этом становится возможным взаимодействие актина
с головками миозина, и возникает сила сокращения. Одновременцо нроисхо-
дит гидролиз АТФ.
Поскольку однократный поворот «головок» укорачивает саркомер лишь
на 1/100 его длины (а при изотоническом сокращении саркомер мышцы
может укорачиваться на 50 % длины за десятые доли секунды), ясно,
что поперечные мостики должны совершать примерно 50 «гребковых» дви-
жений за тот же промежуток времени. Совокупное укорочение последо-
вательно расположенных саркомеров миофибрилл приводит к заметному
сокращению мышцы.
При одиночном сокращении процесс укорочения вскоре закэнчивается.
Кальциевый насос, приводимый в действие энергией АТФ, снижает концент-
-8
рацию Са++ в цитоплазме мышц до 10 М и повышает ее в сарколлазма-
-3
тическом ретикулуме до 10 М, где Са++ связывается белком кальсек-
вестрином.
Снижение уровня Са++ в саркоплазме подавляет АТФ-азную актив-
ность актомиозина; при этом поперечные мостики миозина отсоединяются
от актина. Происходит расслабление, удлинение мышцы, которое является
пассивным процессом.
Б случае, если стимулы поступают с высокой частотой {20 Гц и более),
уровень Са++ в саркоплазме в период между стймулами остается высоким,
так как кальциевый насос не успевает «загнать» все ионы Са++ в систему
саркоплазматического ретикулума. Это является причиной устойчивого
тетанического сокращения мышц.
Таким образом, сокрашение и расслабление мышцы представляет собой
серию процессов, развертывающихся в следующей последовательности:
стимул -> возникновение потенциала действия - >электромеханическое со-
пряжение (проведение возбуждения по Т-трубкам, высвобождение Са++ и
воздействие его на систему тропонин - тропомиозин - актин) - > образова-
ние поперечных мостиков и «скольжение» актиновых нитей вдоль миози-
новых - > сокращение миофибрилл - > снижение концентрации ионов Са++
вследствие работы кальциевого насоса - > пространственное изменение
белков сократительной системы - > расслабление миофибрилл.
После смерти мышды остаются напряженными, наступает так назы-
ваемое трупное окоченение. При этом поперечные связи между филаментами
актина и миозина сохраняются и не могут разорваться по причине снижения
уровня АТФ и невозможности активного транспорта Са++ в саркоплазма-
тический ретикулум.
СТРУКТУРА И ФУНКЦИИ НЕЙРОНА
Материалом для построения ЦНС и ее проводни-
ков является нервная ткань, состоящая из двух компонентов - нервных
клеток (нейронов) и нейроглии. Основными функциональными элементами
ЦНС являются нейроны: в теле животных их содержится примерно 50 млрд,
из которых лишь небольшая часть расположена на периферических участках
тела.
Нейроны составляют 10 - 15 % общего числа клеточных элементов
в нервной системе. Основную же часть ее занимают клетки нейроглии.
У высших животных в процессе постнатального онтогенеза дифферен-