Планета Венера
Страница 2
Подобные образования свойственны Области Теллуры шириной около 400 км, представляющую собой возвышенность, окруженну вулканическими равнинами. Весьма похожий, но более хаотичный рельеф имеет восточная часть Земли Иштар, к которой с севера и с юга примыкают типичные вулканические равнины.
При анализе полученных материалов учеными был обнаружен новый вид рельефа, который широко распространен на Венере. Барсуков и др. предложили для него название «паркет» (имея в виду рисунок но не гладкость). Он так же не имеет прямых аналогов на Земле и состоит из частых чередующихся невысоких гряд возвышенностей и долин. В ряде случаев в их расположении видна определенная закономерность, а расположение соседних полос гряд имеет ортогональный рисунок.
Таким образом на поверхности Венеры преобладают вулканические и вулкано-тектонические равнины, есть лавовые плато, а ряд образований может иметь вулканическую природу.
Высочайшим тектоническим сооружением на планете является горный массив Максвелл, находящийся в центральной части Земли Иштар. Сведения о нем получены из двух источников: радиолокации спутников планеты «Венеры-15 и –16» и наземной радиолокации.
Для определения возраста Плато Лакшми, Гор Максвелла и Земли Иштар в целом и вулканических равнин окружающего района использовался уже упоминавшийся метод регистрации плотности метеоритных кратеров на единицу поверхности. Исходя из модельных расчетов и опираясь на сведения о плотности и возрасте кратеров на Меркурии, Луне, Марсе, ученые (Барсуков и др.) пришли к выводу, что вероятный возраст Плато Лакшми и Земли Иштар в целом 0,5 – 1 млрд. лет и что древняя кратерированная поверхность, относящаяся к периоду максимума метеоритной бомбардировки ( 3,9 млрд. лет ), на Венере не сохранилась, как и на Земле. В отличии от Земли, на Венере сохраняются кратеры возрастом до 1 млрд. лет, в то время как на Земле они разрушаются за несколько миллионов лет.
Типичный метеоритный кратер на поверхности Венеры
Несмотря на огромные технические трудности, связанные с высокими температурой и давлением, первые прямые телевизионные снимки поверхности планеты появились задолго до радиолокационных бортовых экспериментов.
Выветривание горных пород
На Земле выветривание происходит под действием смены температур, потоков воды, осадков (особенно фазовых переходов воды), эрозии переносимой пылью и в результате активности биосферы. Небольшую роль могут играть также сейсмические явления. Наконец, существует химическое выветривание.
На Венере атмосфера поддерживает постоянную температуру поверхности, зависящую только от гипсометрического уровня последней. Суточные колебания температуры не превышают единиц кельвинов, широтной зависимости температур для поверхности почти нет. Нагрев поверхности днем незначительной частью солнечной радиации, достигающей поверхности, не вызывает заметных изменений температуры благодаря эффективному теплообмену с атмосферой. Таким образом, выветривание из-за изменений температур горных пород и образования в них механических напряжений исключается. Вода в жидкой фазе, какие-либо другие осадки и сколько-нибудь значительная влажность также исключаются. Согласно существующим представлениям существование биосферы на Венере невозможно.
Местные разрушения горных пород на планете могут происходить в результате теплового эффекта вулканических извержений и воздействия потоков лавы, если активный вулканизм существует на Венере в нынешнюю эпоху. Однако подобные процессы имеют локальный характер и ограничены во времени. Механические разрушения происходят также в результате тектонических процессов (в том числе сейсмических явлений), с признаками которых мы встречались при описании поверхности планеты (складчатые горы в обрамлении Плато Лакшми, разрушенные скальные породы).
В этих условиях медленным, но постоянно действующим фактором является химическое выветривание в результате термохимических реакций между поверхностью и атмосферой.
Главными агентами атмосферы, вызывающими химическое выветривание, являются серосодержащие газы. Их взаимодействие с поверхностью приводит к связыванию серы в продуктах выветривания, что обогащает верхний слой грунта серой почти на два порядка по сравнению с Землей.
Общие представления об атмосфере Венеры
Тепловое радиоизлучение
Венера обладает наиболее массивной атмосферой из всех планет земной группы. Если отношение массы атмосферы к массе планеты для Земли составляет 0,86 х10-6, то для Венеры оно в 110 раз больше:
0,96 х10-4.
Основные составляющие атмосферы — углекислый газ (96,5%) и азот (около 3,5%). Все остальные газы, присутствующие в атмосфере, вместе взятые, не превосходят 0,1 %. Поэтому в первом приближении атмосферу Венеры можно рассматривать как сухой углекислый газ.
Тропосфера Венеры (нижний «этаж» атмосферы, где температура почти линейно падает с высотой) имеет высокую плотность и обладает значительной протяженностью. Так, ниже уровня, соответствующего «нормальным» земным условиям по давлению и температуре, находится своеобразный газовый океан 50-километровой глубины, состоящий из сильно сжатого и нагретого до высокой температуры газа. Даже если бы атмосфера Венеры была свободна от аэрозолей, попытка увидеть поверхность планеты сквозь столь значительную толщу газа была бы безрезультатной. Благодаря сильному рассеянию (и частичному поглощению) света атмосферой, последняя практически непрозрачна для внешнего наблюдателя во всем диапазоне частот, кроме радиоволн. Значительно прозрачнее атмосфера в диапазоне сантиметровых и дециметровых радиоволн, где и удалось впервые зарегистрировать излучение нагретой поверхности планеты.
Сказанное не означает, однако, что солнечный свет не проникает глубоко в атмосферу; в рассеянном виде он достигает поверхности планеты.
Схема строения атмосферы Венеры выглядит следующим образом. В интервале высот 47—70 км над поверхностью расположен протяженный слой тумана средней плотности, который по традиции называют облаками Венеры. От земных они отличаются не только низкой плотностью, малым массовым содержанием и микроскопическими размерами частиц, но ивесьма экзотическим составом: это мельчайшие капли высококонцентрированной серной кислоты. Облаков водного состава на Венере не бывает, а относитеьное содержание водяного пара в атмосфере очень мало, в 50 – 70 раз меньше, чем в земной атмосфере.
Верхняя граница облаков у 65—70 км имеет размытый характер и постепенно переходит в надоблачную дымку, поднимающуюся еще на 15—20 км. Дымка имеет непостоянную плотность, которая подвержена сильным изменениям с характерным временем около года или менее. Нижняя граница облаков у 47 км выражена весьма четко; но и ниже уровня 47 км имеется слабая дымка, простирающаяся вниз также километров на 15. Ниже 30 км атмосфера Венеры практически свободна от аэрозолей.
Как показывают измерения, температура у поверхности на уровне радиуса 6051,6 км составляет 735 К, давление 92 бар. С высотой температура и давление быстро падают. На уровне примерно 53 км условия близки к земным «нормальным»: от уровня с Т=293 К, где р~0,5 бар, до Т=340 К, где р =1 бар.
Высокие температуры у поверхности определяются одной из главных особенностей атмосферы планеты: сильным парниковым эффектом. Солнечная радиация проникает глубоко в атмосферу и поглощается поверхностью и атмосферой. Однако для длинноволнового теплового излучения атмосфера малопрозрачна, что и создает высокие температуры у поверхности.
Факт высокой температуры поверхности был установлен еще до начала зондирования атмосферы Венеры космическими аппаратами, по радиофизическим исследованиям планеты (Майер, 1963). Как любое нагретое тело, поверхность излучает значительную мощность в радиодиапазоне. Поэтому измерение яркостной температуры радиоизлучения можно связать с термодинамической температурой поверхности. К первым серьезным исследованиям этого рода относятся работы Майера и др. (1957, 1958).
Особенно большое число радиоастрономических измерений было проведено с 1962 по 1970 г. Далее начались прямые измерения на поверхности и проблема утратила актуальность. Наиболее высокие температуры наблюдаются в диапазоне 3—15 см, до 660 К.