Проблема тепловой смерти Вселенной

Страница 3

Для пульсирующей Вселенной картина поведения энтропии оказывается лишь немного другой. Для однородной системы все пульсации оказываются одинаковыми и тоже идут при постоянстве энтропии. Если учесть внутренние необратимые процессы, рост энтропии снова неизбежен, причем в целом энтропия растет и от пульсаций (Я. Б. Зельдович и И. Д. Новиков). На какой-то из ранних стадий энтропия по идее должна быть минимальной, может быть, равной нулю. Следовательно, если в будущем возможен неограниченный рост энтропии, то в прошлом мы должны допустить неизбежность некоторого абсолютного начала, что с общеметодологической точки зрения ничуть не лучше признания конца развития. Впрочем, здесь снова можно вспомнить об условном начальном моменте, когда в гипермире появилась флуктуация «нужного» масштаба, объясняющая и определяющая все дальнейшее поведение.

По мнению многих ученых, неприменимость второго закона термодинамики ко всей Вселенной имеет более глубокий смысл, связанный с ее бесконечным разнообразием. Оно может быть начальным, но может быть и результатом развития более простого образования, описываемого на первых порах простыми моделями, о которых выше говорилось. Но даже в рамках стандартной релятивистской космологии мы сталкиваемся с возможностью использования различных однородных моделей для описания одного и того же распределения вещества. В этой связи сформулирован принцип космологической неопределенности Мак-Рея. В разных моделях если не общий характер, то темп изменений оказывается принципиально неодинаковым – вплоть до того, что время эволюции, бесконечное в одних моделях, может быть конечным в других. То же касается и пространственных свойств моделей. Для иллюстрации этого представим себе, что физический мир обладает необычайным свойством – уменьшать масштабы при движении от некоторого центра. А именно, делая шаг, мы по какой-то причине удаляемся от центра всего на полшага. Делая второй, продвигаемся всего на четверть и т.д. Очевидно, сделав сколь угодно много шагов, мы не продвинемся вперед больше, чем на один первоначально отмеренный шаг. Но подобное, если и не в точности такое уменьшение на самом деле происходит при движении с большой скоростью по отношению к некоторой лабораторной системе отсчета при расширении Вселенной – это известное лоренцево сокращение движущихся масштабов. А. Л. Зельманов обратил внимание на то, что бесконечный в своей координатной системе мир может быть лишь частью другого мира. При этом последний в своей координатной системе может быть даже конечным. Таким образом, понятия конечности и бесконечности (не только пространственнй но и временной) являются не абсолютными, а относительными.

Еще более сложная ситуация может быть в неоднородной системе с вращением. Здесь, как оказывается, нельзя непротиворечивым образом ввести понятие одновременности событий. Пространство, как говорят, становится неголономным. Все это означает, что лишается смысла понятие «состояние системы в определенный момент времени». А наличие горизонта, несвязность или многосвязность больших областей гипермира делают сомнительным и само понятие единой физической системы по отношению ко Вселенной. В этих условиях, по нашему мнению, нет смысла вводить или как-то обощать глобальные понятия, такие, как полная энергия, энтропия, вероятность состояния.

Мы не останавливаемся здесь на важной роли (подчеркиваемой А.П. Трофименко) в термодинамике так называемых отонов, в частности, вращающихся (керровских) черных дыр, которые представляют собой яркий пример неоднородностей в мире, делающих его многосвязным. Тем более невозможно здесь говорить о явлениях, определяемых возможной разномерностью отдельных частей гипермира и прочем важном и интересном, что, однако, физической наукой только допускается, но детально пока не изучено.

Суммируя сказанное, еще раз выделим возможные варианты изменения энтропии и вероятности состояния в мире, при которых о тепловой смерти можно забыть:

1. Энтропия увеличивается неограниченно.

2. Все состояния Вселенной имеют примерно одинаковые вероятности состояния и энтропии, весьма далекие от максимальных значений.

3. Понятия энтропии и вероятности состояния для существенно неоднородной и, возможно, многосвязной Вселенной не имеют смысла. Каждый вариант решает проблему по-своему. Кроме того, первый переносит, по существу, проблему конца развития куда-то в начало, что кажется мало подходящим для гипермира или Вселенной в целом.

Заключение

Тепловая смерть Вселенной – это вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы.

Согласно второму началу термодинамики, любая физическая система, не обменивающаяся энергией с другими системами (для Вселенной в целом такой обмен, очевидно, исключен), стремится к наиболее вероятному равновесному состоянию – к так называемому состоянию с максимумом энтропии.

Однако ещё до создания современной космологии были сделаны многочисленные попытки опровергнуть вывод о тепловой смерти Вселенной. Наиболее известна из них флуктуационная гипотеза Л. Больцмана (1872), согласно которой Вселенная извечно пребывает в равновесном изотермическом состоянии, но по закону случая то в одном, то в другом её месте иногда происходят отклонения от этого состояния; они происходят тем реже, чем большую область захватывают и чем значительнее степень отклонения.

На сегодняшний день у данной теории также имеются как сторонники, так и противники. Несомненно то, что в настоящее время необходим новый взгляд на эту, казалось бы, довольно хорошо изученную проблему.

Вернуться00

Категория: Авиация и космонавтика