Черные дыры
Страница 2
Поскольку никакой носитель информации не способен выйти из-под горизонта событий, внутренняя часть черной дыры причинно не связана с остальной Вселенной, происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. В то же время, вещество и излучение, падающие снаружи на черную дыру, свободно проникают внутрь через горизонт. Можно сказать, что черная дыра все поглощает и ничего не выпускает. По этой причине и родился термин "черная дыра", предложенный в 1967 американским физиком Джоном Арчибальдом Уилером.
2. Формирование черных дыр
Самый очевидный путь образования черной дыры – коллапс ядра массивной звезды. Пока в недрах звезды не истощился запас ядерного топлива, ее равновесие поддерживается за счет термоядерных реакций (превращение водорода в гелий, затем в углерод, и т.д., вплоть до железа у наиболее массивных звезд). Выделяющееся при этом тепло компенсирует потерю энергии, уходящей от звезды с ее излучением и звездным ветром. Термоядерные реакции поддерживают высокое давление в недрах звезды, препятствуя ее сжатию под действием собственной гравитации. Однако со временем ядерное топливо истощается и звезда начинает сжиматься.
Наиболее быстро сжимается ядро звезды, при этом оно сильно разогревается (его гравитационная энергия переходит в тепло) и нагревает окружающую его оболочку. В итоге звезда теряет свои наружные слои в виде медленно расширяющейся планетарной туманности или катастрофически сброшенной оболочки сверхновой. А судьба сжимающегося ядра зависит от его массы. Расчеты показывают, что если масса ядра звезды не превосходит трех масс Солнца, то она "выигрывает битву с гравитацией": его сжатие будет остановлено давлением вырожденного вещества, и звезда превратится в белый карлик или нейтронную звезду. Но если масса ядра звезды более трех солнечных, то уже ничто не сможет остановить его катастрофический коллапс, и оно быстро уйдет под горизонт событий, став черной дырой. Как следует из формулы для rg, черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км.
Астрономические наблюдения хорошо согласуются с этими расчетами: все компоненты двойных звездных систем, проявляющие свойства черных дыр (в 2005 их известно около 20), имеют массы от 4 до 16 масс Солнца. Теория звездной эволюции указывает, что за 12 млрд. лет существования нашей Галактики, содержащей порядка 100 млрд. звезд, в результате коллапса наиболее массивных из них должно было образоваться несколько десятков миллионов черных дыр. К тому же, черные дыры очень большой массы (от миллионов до миллиардов масс Солнца)могут находиться в ядрах крупных галактик, в том числе, и нашей. Об этом свидетельствуют астрономические наблюдения, хотя пути формирования этих гигантских черных дыр не вполне ясны.
Если в нашу эпоху высокая плотность вещества, необходимая для рождения черной дыры, может возникнуть лишь в сжимающихся ядрах массивных звезд, то в далеком прошлом, сразу после Большого взрыва, с которого около 14 млрд. лет назад началось расширение Вселенной, высокая плотность материи была повсюду. Поэтому небольшие флуктуации плотности в ту эпоху могли приводить к рождению черных дыр любой массы, в том числе и малой. Но самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. "Первичные черные дыры" с массой более 1012 кг могли сохраниться до наших дней. Самые мелкие из них, массой 1012 кг (как у небольшого астероида), должны иметь размер порядка 10–15 м (как у протона или нейтрона).
Наконец, существует гипотетическая возможность рождения микроскопических черных дыр при взаимных соударениях быстрых элементарных частиц. Таков один из прогнозов теории струн – одной из конкурирующих сейчас физических теорий строения материи. Теория струн предсказывает, что пространство имеет более трех измерений. Гравитация, в отличие от прочих сил, должна распространяться по всем этим измерениям и поэтому существенно усиливаться на коротких расстояниях. При мощном столкновении двух частиц (например, протонов) они могут сжаться достаточно сильно, чтобы родилась микроскопическая черная дыра. После этого она почти мгновенно разрушится ("испарится"), но наблюдение за этим процессом представляет для физики большой интерес, поскольку, испаряясь, дыра будет испускать все существующие в природе виды частиц. Если гипотеза теории струн верна, то рождение таких черных дыр может происходить при столкновениях энергичных частиц космических лучей с атомами земной атмосферы, а также в наиболее мощных ускорителях элементарных частиц.
3. Свойства черных дыр
Вблизи черной дыры напряженность гравитационного поля так велика, что физические процессы там можно описывать только с помощью релятивистской теории тяготения. Согласно ОТО, пространство и время искривляются гравитационным полем массивных тел, причем наибольшее искривление происходит вблизи черных дыр. Когда физики говорят об интервалах времени и пространства, они имеют в виду числа, считанные с каких-либо физических часов и линеек. Например, роль часов может играть молекула с определенной частотой колебаний, количество которых между двумя событиями можно называть "интервалом времени".
Важно, что гравитация действует на все физические системы одинаково: все часы показывают, что время замедляется, а все линейки, что пространство растягивается вблизи черной дыры. Это означает, что черная дыра искривляет вокруг себя геометрию пространства и времени. Вдали от черной дыры это искривление мало, а вблизи так велико, что лучи света могут двигаться вокруг нее по окружности. Вдали от черной дыры ее поле тяготения в точности описывается теорией Ньютона для тела такой же массы, но вблизи гравитация становится значительно сильнее, чем предсказывает ньютонова теория.
Если бы можно было наблюдать в телескоп за звездой в момент ее превращения в черную дыру, то сначала было бы видно, как звезда все быстрее и быстрее сжимается, но по мере приближения ее поверхности к гравитационному радиусу сжатие начнет замедляться, пока не остановится совсем. При этом приходящий от звезды свет будет слабеть и краснеть пока окончательно не потухнет. Это происходит потому, что, преодолевая силу тяжести, фотоны теряют энергию и им требуется все больше времени, чтобы дойти до нас. Когда поверхность звезды достигнет гравитационного радиуса, покинувшему ее свету потребуется бесконечное время, чтобы достичь любого наблюдателя, даже расположенного сравнительно близко к звезде (и при этом фотоны полностью потеряют свою энергию). Следовательно, мы никогда не дождемся этого момента и, тем более, не увидим того, что происходит со звездой под горизонтом событий, но теоретически этот процесс исследовать можно.
Расчет идеализированного сферического коллапса показывает, что за короткое время вещество под горизонтом событий сжимается в точку, где достигаются бесконечно большие значения плотности и тяготения. Такую точку называют "сингулярностью". Более того, математический анализ показывает, что если возник горизонт событий, то даже несферический коллапс приводит к сингулярности. Однако, все это верно лишь в том случае, если общая теория относительности применима вплоть до очень малых пространственных масштабов, в чем пока нет уверенности. В микромире действуют квантовые законы, а квантовая теория гравитации еще не создана. Ясно, что квантовые эффекты не могут остановить сжатие звезды в черную дыру, а вот предотвратить появление сингулярности они могли бы.
Изучая фундаментальные свойства материи и пространства-времени, физики считают исследование черных дыр одним из важнейших направлений, поскольку вблизи черных дыр проявляются скрытые свойства гравитации. Для поведения вещества и излучения в слабых гравитационных полях различные теории тяготения дают почти неразличимые прогнозы, однако в сильных полях, характерных для черных дыр, предсказания различных теорий существенно расходятся, что дает ключ к выявлению лучшей среди них. В рамках наиболее популярной сейчас теории гравитации – ОТО Эйнштейна – свойства черных дыр изучены весьма подробно. Вот некоторые важнейшие из них: