Юпитер - пятая и самая большая планета Солнечной системы
Страница 2
Сейчас в верхних слоях атмосферы Юпитера над приполярными областями ,обнаружены пульсирующие горячие пятна Телескоп Chandra точно определил положение пятен и выяснилось, что вышеупомянутая теория не работает, так как ионы, вылетев из Ио, не могут достичь высоких широт Юпитера, а именно там и наблюдается рентгеновское излучение. Согласно расчетам, получается, что источник этих ионов находится на расстоянии как минимум 30 радиусов Юпитера, но там, как показывают измерения, проведенные аппаратурой зонда Cassini, нет достаточного количества ионов кислорода и серы. Возможно, магнитное поле Юпитера захватывает ионы из солнечного ветра, ускоряет их и направляет к магнитному полюсу. Причем эти ионы могут двигаться в магнитном поле Юпитера от одного полюса к другому, и этим могут объясняться пульсации рентгеновских пятен.
Внутреннее строение Юпитера можно представить в виде оболочек с плотностью, возрастающей по направлению к центру планеты. На дне уплотняющейся вглубь атмосферы толщиной 1500 км находится слой газо-жидкого водорода толщиной около 7000 км. На уровне 0,88 радиуса планеты, где давление составляет 0,69 Мбар, а температура - 6200° С, водород переходит в жидкомолекулярное состояние и еще через 8000 км в жидкое металлическое состояние. Наряду с водородом и гелием в состав слоев входит небольшое количество тяжелых элементов. Внутреннее ядро диаметром 25000 км - металлосиликатное, включающее воду, аммиак и метан, окружено гелием. Температура в центре составляет 23000 градусов, а давление 50 Мбар.
Вокруг Юпитера, по данным на май 2002-го года обращаются 39 спутников, обращённых к нему, из-за действия приливных сил всегда одной стороной. Их можно разделить на две группы внутреннюю, включающие по 8 спутников, и внешнюю. Спутники внутренней группы обращаются почти по круговым орбитам, практически совпадающим с плоскостью экватора планеты. Четыре самых близких к планете спутника Адрастея, Метида, Амальтея и Теба диаметром от 40 до 270 км находятся в пределах 1-3 радиусов Юпитера и резко отличаются по размерам от следующих за ними 4 спутников, расположенных на расстоянии от 6 до 26 радиусов Юпитера и имеющих размеры, близкие к Луне. Они были открыты в самом начале семнадцатого века почти одновременно Симоном Марием и Галилеем, но принято их называть галилеевыми спутниками Юпитера, хотя первые таблицы движения этих спутников Ио, Европы, Ганимеда и Каллисто составил Марий.
Внешняя группа состоит из маленьких диаметром от 10 до 180 км спутников, движущихся по вытянутым и сильно наклоненным к экватору Юпитера орбитам, причем четыре более близких к Юпитеру спутника Леда, Гималия, Лиситея, Элара движутся по своим орбитам в ту же сторону, что и Юпитер, а четыре самых внешних спутника Ананке, Карме, Пасифе и Синопе движутся в обратном направлении.
Ещё по 11 спутников было открыто группой астрономов из Астрономического института Гавайского университета в конце 2000-го ( диаметром 4-12 км - S/2000 J1 до S/2000 J11) и 2001-го годов ( диаметром от 2 до 4 км. S/2001 J1 до S/2001 J11). Оценки размеров получены в предположении, что их альбедо (отражательная способность поверхности) составляет 4%. Блеск спутников составляет от 22 до 23m .Все они обращаются по заметно вытянутым эллиптическим орбитам с эксцентриситетом от 0,16 до 0,48, Направление орбитального движения всех новых спутников обратное (то есть они обращаются в направлении, противоположном движению планет вокруг Солнца и крупных спутников вокруг Юпитера). Орбиты сильно наклонены к плоскости эклиптики - от 15 до 38 градусов. Периоды обращения составляют от 534 до 753 суток, большие полуоси орбит - от 19 до 24 млн км.
Считается, что спутники с обратным направлением движения не могли образоваться в ходе конденсации планет, и, по всей видимости, были захвачены Юпитером на ранних этапах его эволюции. Однако Юпитеру, как и другим планетам довольно сложно захватить астероид, пролетающий мимо по гелиоцентрической орбите. Для этого необходимо, чтобы во время сближения астероид каким-то образом потерял часть своей энергии. Каким образом астероид может потерять часть энергии на сегодня не ясно. В настоящее время таких механизмов просто не существует.
Авторы открытия допускают возможность, что на ранних стадиях эволюции молодой Юпитер обладал огромной атмосферой, которая простиралась далеко за пределы нынешнего облачного слоя. Трение при движении сквозь такую атмосферу могло бы стать причиной захвата астероидов. Однако для того, чтобы захваченные астероиды, продолжая терять скорость, не упали на планету протяженная атмосфера должна существовать лишь в течение довольно короткого времени. Хотя подобное объяснение выглядит не слишком убедительно, другого пока нет.
Вернуться00
Категория: Авиация и космонавтика