Эволюция Вселенной
Страница 2
Один из проектов американские инженеры и физики планируют осуществить в конце века. Это будет очень мощный ускоритель на встречных пучках, причем для уменьшения потребляемой энергии в кольцевой установке с длиной окружности 84 км будут использованы сверхпроводящие магниты. Будущий ускоритель назван сверхпроводящим суперколлайдером SSC.
Одно из удивительных свойств физического вакуума связано с тем, что он создает отрицательное давление и, стало быть, сможет оказаться источником сил отталкивания в природе. Это свойство играет исключительно важную роль в сценарии «раздувающейся Вселенной».
Парадоксы стационарной Вселенной
В 1744 г. швейцарский астроном Жан Филипп де Шезо открыл фотометрический парадокс, связанный с предполагаемой бесконечностью вселенной. Суть его в следующем: если в бесконечной вселенной бесчисленное множество звезд, то по любому направлению взгляд земного наблюдателя непременно наталкивался бы на какую-нибудь звезду, и тогда небосвод имел бы яркость сравнимую с яркостью солнца, чего в действительности не наблюдается. В 1826 г. немецкий астроном Генрих Ольберс независимым путем пришел к тем же выводам. С тех пор фотометрический парадокс носит имя парадокса Шезо-Ольберса. Ученые пытались различными путями устранить указанный парадокс, предполагая неравномерность расположения звезд или поглощение света газопылевыми межзвездными облаками, как это пытались сделать Шезо и Ольберс. Однако, как было позже показано, газопылевые облака должны были нагреться и сами переизлучать поглощенные лучи, и этот факт не позволял избежать фотометрического парадокса.
В 1895 г. немецкий астроном Хуго Зеелигер открыл гравитационный парадокс, также связанный с предполагаемой бесконечностью вселенной. Суть его такова: если в бесконечной вселенной бесчисленное множество равномерно распределенных звезд (масс), то сила тяготения их, действующая на любое тело, становится или бесконечно большой или неопределенной (в зависимости от способа расчета), чего не наблюдается. И в этом случае предпринимались попытки избежать гравитационного парадокса, предполагая в законе тяготения другую формулу для гравитационной силы, или, считая, что плотность масс во вселенной близка к нулю. Но точные наблюдения за движением планет солнечной системы опровергли эти предположения. Парадокс оставался в силе.
В 1865 г. немецкий физик Рудольф Клаузиус на базе открытого им второго начала термодинамики обнаружил термодинамический парадокс, связанный с предполагаемой вечностью вселенной. Суть его состоит в том, что за бесконечное время вселенная должна была достигнуть состояния теплового равновесия с максимумом энтропии, когда световая энергия звезд перейдет в теплоту. Это эквивалентно «тепловой смерти» вселенной, когда все звезды погаснут, и никакие процессы в мире уже не могут происходить. Термодинамический парадокс пытался опровергнуть Людвиг Больцман, предполагая, что Земля и весь видимый космос – это маловероятная флюктуация от обычного состояния остальной бесконечной и вечной вселенной, пребывающей в тепловой смерти. Внутри этой флюктуации возможны наблюдаемые нами активные процессы.
Во вселенной, ограниченной в пространстве и имеющей начало во времени, сотворенной или нестационарной расширяющейся, устраняются все три космологических парадокса.
Основные положения теории относительности Эйнштейна
Частная теория относительности – это основа физического учения о пространстве, времени и движении. В её рамках пространство и время удается объединить. Частная теория относительности позволяет в самом общем виде и весьма простыми средствами представить физическое учение о движении как проявление геометрии пространства-времени. Частная теория относительности изучает свойства пространства-времени, «справедливые с той точностью, с какой можно пренебрегать действием тяготения», то есть специальная теория рассматривает инерциальные системы отсчета.
Инерциальной называется система отсчета, в которой справедлив закон инерции: материальная точка, когда на нее не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения. Всякая система отсчета, движущаяся по отношению к ней поступательно, равномерно и прямолинейно, есть также инерциальная.
В основе теории относительности лежат два положения: принцип относительности, означающий равноправие всех инерциальных систем отсчета («все системы отсчета одинаковы и нет какой-либо одной, имеющей преимущество перед другими»), и закон распространения света постоянство скорости света в вакууме, ее независимость от скорости движения источника света.
Эти два постулата определяют формулы перехода от одной инерциальной системы отсчета к другой – это преобразования Лоренца (преобразования описывают связь между координатами и временем конкретного события в двух различных инерциальных системах отсчета):
,
где с-параметр преобразования, имеющий смысл предельной скорости движения и, соответственно, равный скорости света в вакууме.
Характерно, что при таких переходах изменяются не только пространственные координаты, но и моменты времени (относительность времени). Из преобразований Лоренца получаются основные эффекты специальной теории относительности:
~ существование предельной скорости передачи любых взаимодействий – максимальной скорости, до которой можно ускорить тело, совпадающей со скоростью света в вакууме;
~ относительность одновременности (события, одновременные в одной инерциальной системе отсчета, в общем случае не одновременны в другой);
~ замедление течения времени в быстро движущемся теле и сокращение продольных – в направлении движения – размеров тел («Время в системе координат, движущейся со скоростями, близкими к скорости света, относительно наблюдателя растягивается, а пространственная протяженность (длина) объектов вдоль оси направления движения – напротив, сжимается»).
Все эти закономерности теории относительности надежно подтверждены на опыте.
Нестационарная Вселенная Фридмана
Первые принципиально новые революционные космологические следствия общей теории относительности раскрыл выдающийся советский математик и физик-теоретик Александр Александрович Фридман (1888–1925). Основными уравнениями общей теории относительности являются «мировые уравнения» Эйнштейна, которые описывают геометрические свойства, или метрику, четырехмерного искривленного пространства – времени. Решение их позволяет в принципе построить математическую модель Вселенной. Первую такую попытку предпринял сам Эйнштейн. Считая радиус кривизны пространства постоянным (т.е. исходя из предположения о стационарности Вселенной в целом, что представлялось наиболее разумным), он пришел к выводу, что Вселенная должна быть пространственно конечной и иметь форму четырехмерного цилиндра. В 1922–1924 гг. Фридман выступил с критикой выводов Эйнштейна. Он показал необоснованность его исходного постулата – о стационарности, неизменности во времени Вселенной. Проанализировав мировые уравнения, Фридман пришел к заключению, что их решение ни при каких условиях не может быть однозначным и не может дать ответа на вопрос о форме Вселенной, ее конечности или бесконечности. Исходя из противоположного постулата – о возможном изменении радиуса кривизны мирового пространства во времени, Фридман нашел нестационарные решения «мировых уравнений». В качестве примера таких решений он построил три возможные модели Вселенной. В двух из них радиус кривизны пространства монотонно растет, и Вселенная расширяется (в одной модели – из точки, в другой – начиная с некоторого конечного объема). Третья модель рисовала картину пульсирующей Вселенной с периодически меняющимся радиусом кривизны. Встретив сначала решения Фридмана с большим недоверием, Эйнштейн затем убедился в его правоте и согласился с критикой молодого физика. Две первые модели Вселенной Фридмана уже вскоре нашли удивительно точное подтверждение в непосредственных наблюдениях движений далеких галактик – в так называемом эффекте «красного смещения» в их спектрах. Он свидетельствует о взаимном удалении всех достаточно далеких друг от друга галактик и их скоплений. Если обратить картину во времени, то это приводит к заключению о существовании «начала» обнаруженного общего расширения пространства Вселенной! Такие выводы и были сделаны уже в конце 20-х годов бельгийским астрономом аббатом Ж. Леметром (о расширении Вселенной из точки, из «атома-отца») и А. Эддингтоном (предположившим, что расширение началось от состояния плотного сгустка конечных размеров). Все это ломало привычные, тысячелетиями складывавшиеся представления, прежде всего о «вечности» Вселенной, поскольку она отождествлялась со «всей существующей материей».