Влияние космической погоды на планету Земля

Страница 2

РИС. 1 В геомагнитном поле заряженные частицы с определёнными скоростями могут захватываться в так называемые „магнитные бутылки“: траектории электронов и протонов (1) длительное время „привязаны“ к силовым линиям (2), многократно отражаясь от их околоземных концов (3) и медленно дрейфуя вокруг Земли (4).

Известно, что почти дипольное магнитное поле внутренней магнитосферы Земли создаёт особые зоны „магнитных бутылок“, в которых заряженные частицы могут „захватываться“ на длительное время, вращаясь вокруг силовых линий. При этом частицы периодически отражаются от околоземных концов силовой линии (где магнитное поле увеличивается) и медленно дрейфуют вокруг Земли по окружности. В наиболее мощном внутреннем радиационном поясе хорошо удерживаются протоны с энергиями вплоть до сотен мегаэлектронвольт. Дозы облучения, которые можно получить при его пролёте, настолько велики, что долго в нём рискуют держать только научно – исследовательские спутники. Пилотируемые корабли прячутся на более низких орбитах, а большинство спутников связи и навигационных космических аппаратов находится на орбитах выше этого пояса. Наиболее близко к Земле внутренний пояс подходит в точках отражения. Из – за наличия магнитных аномалий (отклонений геомагнитного поля от идеального диполя) в тех местах, где поле ослаблено (над так называемой бразильской аномалией), частицы достигают высот 200–300 километров, а в тех, где оно усилено (над восточно – сибирской аномалией), — 600 километров. Над экватором пояс отстоит от Земли на 1500 километров. Сам по себе внутренний пояс довольно стабилен, но во время магнитных бурь, когда геомагнитное поле ослабевает, его условная граница спускается ещё ближе к Земле. Поэтому положение пояса и степень солнечной и геомагнитной активности обязательно учитываются при планировании полётов космонавтов и астронавтов, работающих на орбитах высотой 300–400 километров.

Во внешнем радиационном поясе наиболее эффективно удерживаются энергичные электроны. „Население“ этого пояса очень нестабильно и многократно возрастает во время магнитных бурь за счёт вброса плазмы из внешней магнитосферы. К сожалению, именно по внешней периферии этого пояса проходит геостационарная орбита, незаменимая для размещения спутников связи: спутник на ней неподвижно „висит“ над одной точкой земного шара (её высота около 36 тысяч километров). Поскольку радиационная доза, создаваемая электронами, не столь велика, то на первый план выходит проблема электризации спутников. Дело в том, что любой объект, погружённый в плазму, должен находиться с ней в электрическом равновесии. Поэтому он поглощает некоторое количество электронов, приобретая отрицательный заряд и соответствующий „плавающий“ потенциал, примерно равный температуре электронов, выраженной в электронвольтах. Появляющиеся во время магнитных бурь облака горячих (до сотен килоэлектронвольт) электронов придают спутникам дополнительный и неравномерно распределённый, из - за различия электрических характеристик элементов поверхности, отрицательный заряд. Разности потенциалов между соседними деталями спутников могут достигать десятков киловольт, провоцируя спонтанные электрические разряды, выводящие из строя электрооборудование. Наиболее известным следствием такого явления стала поломка во время одной из магнитных бурь 1997 года американского спутника TELSTAR, оставившая значительную часть территории США без пейджерной связи. Поскольку геостационарные спутники обычно рассчитаны на 10–15 лет работы и стоят сотни миллионов долларов, то исследования электризации поверхностей в космическом пространстве и методы борьбы с ней обычно составляют коммерческую тайну.

Ещё один важный и самый нестабильный источник космической радиации — это солнечные космические лучи. Протоны и альфа - частицы, ускоренные до десятков и сотен мегаэлектронвольт, заполняют Солнечную систему только на короткое время после солнечной вспышки, но интенсивность частиц делает их главным источником радиационной опасности во внешней магнитосфере, где геомагнитное поле ещё слишком слабо, чтобы защитить спутники. Солнечные частицы на фоне других, более стабильных источников радиации „отвечают“ и за кратковременные ухудшения радиационной обстановки во внутренней магнитосфере, в том числе и на высотах, используемых для пилотируемых полётов.

Наиболее глубоко в магнитосферу энергичные частицы проникают в приполярных районах, так как частицы здесь могут большую часть пути свободно двигаться вдоль силовых линий, почти перпендикулярных к поверхности Земли. Приэкваториальные районы более защищены: там геомагнитное поле, почти параллельное земной поверхности, изменяет траекторию движения частиц на спиральную и уводит их в сторону. Поэтому трассы полётов, проходящие в высоких широтах, значительно более опасны с точки зрения радиационного поражения, чем низкоширотные. Эта угроза относится не только к космическим аппаратам, но и к авиации. На высотах 9–11 километров, где проходит большинство авиационных маршрутов, общий фон космической радиации уже настолько велик, что годовая доза, получаемая экипажами, оборудованием и часто летающими пассажирами, должна контролироваться по правилам, установленным для радиационно опасных видов деятельности. Сверхзвуковые пассажирские самолеты „Конкорд“, поднимающиеся на ещё большие высоты, имеют на борту счётчики радиации и обязаны лететь, отклоняясь к югу от кратчайшей северной трассы перелёта между Европой и Америкой, если текущий уровень радиации превышает безопасную величину. Однако после наиболее мощных солнечных вспышек доза, полученная даже в течение одного полёта на обычном самолёте может быть больше, чем доза ста флюорографических обследований, что заставляет всерьёз рассматривать вопрос о полном прекращении полётов в такое время. К счастью, всплески солнечной активности подобного уровня регистрируются реже, чем один раз за солнечный цикл — 11 лет.

3. ВЗБУДОРАЖЕННАЯ ИОНОСФЕРА

На нижнем этаже электрической солнечно - земной цепи расположена ионосфера — самая плотная плазменная оболочка Земли, буквально как губка впитывающая в себя и солнечное излучение, и высыпания энергичных частиц из магнитосферы. После солнечных вспышек ионосфера, поглощая солнечное рентгеновское излучение, нагревается и раздувается, так что плотность плазмы и нейтрального газа на высоте нескольких сотен километров увеличивается, создавая значительное дополнительное аэродинамическое сопротивление движению спутников и пилотируемых кораблей. Пренебрежение этим эффектом может привести к „неожиданному“ торможению спутника и потере им высоты полёта. Пожалуй, самым печально известным случаем такой ошибки стало падение американской станции „Скайлэб“, которую „упустили“ после крупнейшей солнечной вспышки, произошедшей в 1972 году. К счастью, во время спуска с орбиты станции „Мир“ Солнце было спокойным, что облегчило работу российским баллистикам.

Однако, возможно, наиболее важным для большинства обитателей Земли эффектом оказывается влияние ионосферы на состояние радиоэфира. Плазма наиболее эффективно поглощает радиоволны только вблизи определённой резонансной частоты, зависящей от плотности заряженных частиц и равной для ионосферы примерно 5–10 мегагерцам. Радиоволны более низкой частоты отражаются от границ ионосферы, а волны более высокой — проходят сквозь неё, причём степень искажения радиосигнала зависит от близости частоты волны к резонансной. Спокойная ионосфера имеет стабильную слоистую структуру, позволяя за счёт многократных отражений принимать радиосигнал диапазона коротких волн (с частотой ниже резонансной) по всему земному шару. Радиоволны с частотами выше 10 мегагерц свободно уходят через ионосферу в открытый космос. Поэтому радиостанции УКВ - и FM - диапазонов можно слышать только в окрестностях передатчика, а на частотах в сотни и тысячи мегагерц связываются с космическими аппаратами.