Кровельные работы

Страница 3

Изол – безосновный рулонный гидроизоляционный и кровельный материал, изготавливаемый прокаткой резино-битумной композиции, полученной термомеханической обработкой девулканизированной резины, нефтяного битума, минерального наполнителя, антисептика и пластификатора. Изол долговечнее рубероида более чем в 2 раза, эластичен, биостоек, незначительно поглощает влагу. Его выпускают в рулонах шириной 800 и 1000 мм, толщиной 2мм, общей площадью полотна 10-15м2. Изол применяют для гидроизоляции гидротехнических сооружений, бассейнов, резервуаров, подвалов, антикоррозионной защиты трубопроводов, для покрытия двух- и трёхслойных пологих и плоских кровель. Приклеивают изол холодной или горячей мастикой под тем же названием.

Кровельные и гидроизоляционные материалы должны отвечать установленным требованиям по водонепронепроницаемости, водопоглощению, теплостойкости и механической прочности. Водонепроницаемость испытывают при гидростатическом давлении, установленным для каждого материала. Например, при испытании стеклорубероида под гидростатическим давлением 0,07 МПа в течение 10 мин. на поверхности образцов не должно появляться признаков проникания воды. Водопоглощение должно быть минимальным – для стеклорубероида – не более 0,5%. Теплостойкость характеризуется температурой, которая не вызывает сползания посыпки и появления вздутий и других дефектов покровного слоя. Теплостойкость битумных материалов (рубероида, стеклорубероида) – не менее 80°С, толя - 45°С, дегтебитумных материалов – не ниже 70°С. Механическая прочность характеризуется разрывным грузом при растяжении полоски материала шириной 50мм. Для рубероида этот показатель не менее 320-340 Н, стеклорубероида – не ниже 300Н.

Листовые материалы и штучные изделия. Листы битумные, фасонные предназначены для лицевых покрытий кровли. Армированные плиты изготовляют пресованием горячей мастики или горячей асфальтовой смеси, применяя армирование стелотканью или металлической сеткой. Неармированные плиты изготовляют из тех же смесей, но без армирования. Плиты применяют для устройства гидроизоляции и заполнения деформационных швов.

Мастики. Мастика представляет собой смесь нефтяного битума или дёгтя (отогнанного и составленного) с минеральным наполнителем. Для получения мастик применяют: пылевидные наполнители (измельчённый известняк, доломит, мел, цемент, золы твёрдых видов топлива), волокнистые наполнители (асбест, минеральную вату и др.).

Наполнители адсорбируют на своей поверхности масла, при этом повышается теплостойкость и твёрдость мастики. Кроме того, уменьшается расход битума или дёгтя; волокнистые наполнители, армируя материал, увеличивают его сопротивление изгибу.

Мастики подразделяют: по виду связующего – на битумные, битумно-резиновые, битумно-полимерные; по способу применения – на горячие, применяемые с предварительным подогревом до 160°С – для битумных мастик, и холодные, содержащие растворитель, используемые без подогрева при температуре воздуха не ниже 5°С и с подогревом до 60° - 70°С при температурах воздуха ниже 5°С; по назначению – на приклеивающие, кровельно-изоляционные, гидроизоляционные, асфальтовые и антикоррозионные.

Приклеивающие мастики применяют для склеивания рулонных материалов при устройстве многослойных кровельных покрытий и оклеечной гидроизоляции. Битумные кровельные материалы (рубероид, пергамин) приклеивают битумной мастикой, а дегтевые (толь, толь-кожа) – дегтевой.

Гидроизоляционные асфальтовые мастики применяют для устройства литой и штукатурной гидроизоляции и в качестве вяжущего для изготовления плит и других штучных изделий.

Горячие битумно-минеральные мастики изготовляют из битума с количеством минерального наполнителя 30-64% в зависимости от назначения и предъявляемых требований. Их применяют для заливочной гидроизоляции швов гидротехнических сооружений.

Холодные асфальтовые мастики (хамаст) получают, смешивая битумно-известковую пасту с минеральным наполнителем без нагрева компонентов. Их применяют для штукатурной гидроизоляции и заполнения гидроизоляционных швов.

Гидрофобный газоасфальт изготавливают на основе битумно-известковой пасты с добавкой 10-50% портландцемента и алюминиевой пудры в качестве газообразователя. Используют в конструкциях комплексных кровельных панелей и теплогидроизоляции трубопроводов.

Антикоррозионные битумные мастики служат для защиты строительных конструкций и трубопроводов от агрессивных воздействий. Существуют битумно-полимерные мастики, содержащие добавку каучука или синтетической смолы, придающей эластичность на морозе и теплостойкость.

Эмульсии и пасты. Битумные эмульсии представляют собой дисперсные системы, в которых вода является средой и в ней битум диспергирован в виде частиц размером около 1мкм. Эмульгаторами служат мыла (нафтеновых, сульфонафтеновых, смоляных органических кислот), сульфитно-дрожжевая бражка. К твёрдым эмульгаторам относятся тонкие порошки глин, извести, цемента, каменного угля, сажи. Твёрдые эмульгаторы, как и водорастворимые, адсорбируются на поверхности частиц битума, образуя защитный слой, препятствующий слипанию частиц. Приготовление эмульсии включает: разогрев битума до 50-120°С, приготовление эмульгатора, диспергирование вяжущего в воде с добавлением водного раствора эмульгатора. Пасты, являющиеся высококонцентрированными эмульсиями и эмульсиями с твёрдыми эмульгаторами, разбавляют водой до получения нужной вязкости. Эмульсии применяют для грунтовки основания под гидроизоляцию, приклеивания рулонных и штучных битумных материалов, для устройства гидро- и пароизоляционного покрытий и в качестве вяжущего вещества при изготовлении асфальтовых растворов и бетонов.

Битумно-смоляные лаки представляют растворы битумов и органических масел в органических растворителях. При добавлении алюминиевой пудры получают теплостойкую краску, идущую для окраски санитарно-технического оборудования.

Полимерные материалы по многим свойствам превосходят металлы за счёт низкой плотности, стойкости против коррозии, хороших тепло-, звуко,- электроизоляционных свойств, низких производственных расходов при переработке, возможности замены нескольких металлических деталей разного назначения одной, выполненной из полимерного материала.

II. ТЕХНОЛОГИЯ И МЕХАНИЗАЦИЯ РАБОТ ПО УСТРОЙСТВУ РУЛОННЫХ КРОВЕЛЬ

2.1. ВЫБОР УКЛОНОВ И КОНСТРУКЦИЙ ПОКРЫТИЙ (КРЫШ) В ЗАВИСИМОСТИ ОТ ЭКСПЛУАТАЦИОННЫХ УСЛОВИЙ

В современном строительстве наряду с традиционными крышами, ограждающими сверху чердак здания, широкое распространение получили так называемые совмещенные (бесчердачные) покрытия.

Совмещенные покрытия выполняют функцию несущего элемента: нижняя поверхность одновременно является потолком помещения, верхняя несет элементы кровли. В отличие от чердачных крыш совмещенные покрытия выполняют с незначительными уклонами. В зависимости от уклонов покрытий (крыш) выбирают кровельный материал. Наклонные линии на рисунке характеризуют наименьший допустимый для данного материала наклон ската крыши к горизонту. Уклон, равный 100%, соответствует углу 45°. Уклоны покрытий (крыш) даны для режима атмосферных осадков зоны с умеренным климатом. В других зонах допускаются уклоны, отличающиеся от приведенных на рисунке значений, при условии обоснования их опытом строительства и эксплуатации зданий в указанных зонах, а также с разрешения организации, утверждающей проект.

При выборе конструкции покрытия необходимо знать о сложных физических процессах, которые происходят в рулонной кровле под влиянием климатических условий.

Климатические условия. При низкой температуре наружного воздуха, сравнительно высокой температуре и относительной влажности воздуха в верхних помещениях здания нередко наблюдается появление росы в нижних слоях кровельного ковра. Это явление особенно опасно для теплой конструкции покрытия: при повреждении пароизоляционного слоя роса может появиться в теплоизоляционном слое. Излишняя влага в виде теплого и влажного воздуха будет стремиться проникнуть в верхние слои рулонного ковра вплоть до его наружного слоя. В летний период черная поверхность рулонного ковра под действием солнечной радиации сильно нагревается и часто температура в нем поднимается на 40—50° выше температуры окружающего воздуха в тени. При этом часть влаги в виде капель и паров, ранее проникшая в поры и микротрещины нижних слоев рулонного ковра, под действием более высокой температуры начинает расширяться, создавая местное давление. В результате верхние слои ковра деформируются и на его поверхности образуются различной величины вздутия (пузыри). Одновременно образовавшийся в рулонном ковре пар под действием местного давления может распространиться в стороны и вызвать разрывы полотнищ. При значительных перепадах температур в наружном слое ковра появляются новые микротрещины. Через эти трещины с наступлением весенне-летнего сезона атмосферная влага просачивается внутрь рулонного ковра и заполняет ранее образовавшиеся пузыри, превращая их в водяные мешки.