История развития и выдающиеся конструкторы российского оружия
Страница 2
плуатации в море показал низкую надежность этого типа соединения. Начиная с 1974 года корпуса стали изготавливать сварными. Для них были созданы высокопрочные коррозиестойкие морские алюминиево-магниевые сплавы и освоено производство прессованных панелей с ребрами жесткости различного сечения. Толщина обшивки панелей 3 мм и 4 мм при длине листа 8 м и ширине до 2 м. Большой объем исследований был проведен в области создания гибких ограждений. На собственной исследовательской базе ЦМКБ “Алмаз” испытано более 20 различных схем ограждений. Научноисследовательскими институтами были установлены зависимости прочности и износостойкости материалов гибких ограждений от характера применяемых филаментарных волокон, кручения и вида плетения филаментарных нитей, пропиток и состава покрывающих резиновых смесей. Применяемые на СВП последних проектов резинотканевые материалы обеспечивают хорошую мореходность судов и возможность длительной эксплуатации без ремонта. Для судов на воздушной подушке был разработан специальный профиль лопастей воздушных винтов, которые позволили достичь высоких КПД на малых, по сравнению с самолетными, скоростях. Для всех КВП водоизмещением свыше 100 т разработана и применена единая втулка винта, что обеспечило высокую безотказность работы воздушных винтов при изменении их шага. Определяющее значение для мореходности, амфибийности и износостойкости гибкого ограждения имеет расход воздуха через воздушную подушку. Для подачи воздуха были разработаны специальные схемы осевых и центробежных нагнетателей, которые имеют высокий КПД при малых габаритах. Это позволило уменьшить площади и объемы, занимаемые механизмами. Для привода винтов, нагнетателей и других потребителей были созданы высокотемпературные газотурбозубчатые агрегаты. По своим массогабаритным и эксплуатационным параметрам эти агрегаты до настоящего времени занимают лидирующее место в мире. Особое внимание нужно обратить на проблему очистки от морских солей воздуха, поступающего в главные двигатели. Разработанная и применяемая система воздухоотчистки позволяет обеспечить длительную работу газовых турбин без снижения их параметров при солености моря до 30 промиле включительно и движении переменными ходами. Для СВП коммерческого назначения применены дизельные двигатели высокой экономичности с воздушным охлаждением. Безопасность скоростного судна в значительной мере определяется наличием надежных и проверенных систем управления движением. Особенностью СВП является отсутствие непосредственного контакта рулевых устройств с водой, что затрудняет маневрирование и делает судно весьма зависимым от погоды. Были разработаны и испытаны различные схемы управления судном, включая аэродинамические рули, струйные рули (реактивные сопла) , винты изменяемого шага (ВИШ) . Этот опыт позволяет заранее предсказать, насколько эффективна будет та или иная система автоматического управления. Оценивая перспективы развития амфибийных СВП в России, связанные прежде всего с деятельностью ведущей проектной организации - ЦМКБ “Алмаз” , следует отметить следующие главные направления их развития: в области малых и средних судов создание многоцелевых СВП для эксплуатации в дельтах рек, на мелководных и засоренных фарватерах, на замерзающих акваториях Севера и Дальнего Востока ; в области средних и крупных СВП создание грузовых, грузопассажирских СВП и СВП специального назначения (обеспечение работ на шельфе, суда-разгрузчики, суда-снабженцы и т.д.) . Одновременно с амфибийными СВП ЦМКБ “Алмаз” имеет ряд современных разработок СВП скегового типа водоизмещением от 60 до 2500 тонн и скоростью хода от 40 до 60 узлов. Однако их рассмотрение выходит за пределы данной статьи. Как видно из данной краткой характеристики серийной постройки СВП, Россия обладает современным научно-техническим и производственным потенциалом в этой области. Здесь могут быть созданы суда на воздушной подушке в широком диапазоне водоизмещений, скоростей хода и различных назначений, полностью удовлетворяющие самые взыскательные требования заказчика. 2) Экранопланы. “Мне приходилось участвовать в испытаниях или быть пассажиром многих транспортных средств: наземных, воздушных, водных, но я никогда не ощущал такой восторженности как на экраноплане “. Эти слова принадлежат известному Генеральному конструктору самолетов М. П. Симонову и произнесены им сразу же после полета на одном из действующих экранопланов типа “Орленок” . Они, как нельзя лучше, отражают общее восприятие этого нового транспортного средства, о чем свидетельствуют и многочисленные отзывы участников полетов на экранопланах. И это не случайно, так как экранопланы соединяют в себе положительные качества самолетов и кораблей, когда большая (самолетная) скорость движения сочетается с удивительным, романтическим восприятием близости быстроменяющегося морского пейзажа. Неизгладимое впечатление от экранного полета придает особую привлекательность этому новому виду транспорта особенно для туристов. В технике же, как правило, положительное эмоциональное восприятие соответствует ее высокому техническому уровню и большой экономической целесообразности. Экранопланы - это диалектическое развитие кораблей (судов) на динамических принципах поддержания. Своим рождением они были обязаны двум главным обстоятельствам. Во-первых, логике развития водных транспортных средств и в связи с этим настойчивой работе судостроителей (конструкторов и ученых) по повышению скорости движения. И, во-вторых заинтересованности военных моряков в применении на морских и океанских просторах боевых и транспортных средств, обладающих максимально возможными скоростями движения, высокой мобильностью и скоростью. Скорость, пространство и время всегда были главными факторами, на войне определявшими успех боевых операций, а в мирных условиях эффективность решения различных хозяйственных задач, связанных с широким применением всевозможных транспортных средств. Поэтому появление новых транспортных средств, отличающихся более высокими скоростными характеристиками по сравнению со своими предшественниками, всегда сопровождалось революционным воздействием на соответствующие сферы деятельности людей. Так, широкое внедрение судов на подводных крыльях (СПК) в 60-х годах коренным образом изменило пассажирские перевозки на водном транспорте, сделав их рентабельными для государства и привлекательными для пассажиров. В дальнейшем СПК нашли применение и в военном деле в частности в качестве малых противолодочных и патрульных катеров. Их скорость в 2-3 раза выше по сравнению с обычными водоизмещающими судами. Но на этом возможности СПК были практически исчерпаны из-за физического явления кавитации (холодного кипения от разряжения) воды на верхней поверхности подводного крыла. Достигнуть скорости бол-ее 100 - 120 км/ч на СПК оказалось технически трудно выполнимым и экономически нецелесообразным. Суда на статической воздушной подушке (ССВП) позволили несколько повысить верхний предел скорости по сравнению с СПК, но для них непреодолимым барьером стало ориентировочно 150 - 180 км/ч из-за потери устойчивости движения. При этом всякое повышение скорости сопровождалось ухудшением пропульсивных качеств таких судов, связанным с необходимостью повышения относительной мощности энергетических установок. Экранопланы, в отличие от ССВП, поддерживаются над поверхностью при помощи не статической (искусственно создаваемой специальными нагнетателями с соответствующими затратами мощности) , а естественной динамической воздушной подушки, возникающей от скоростного напора набегающего потока воздуха. При этом имеет место так называемый экранный эффект, заключающийся в повышении аэродинамического качества воздушного крыла при его движении вблизи экранирующей поверхности, а также в его самостабилизации по высоте движения относительно экрана. Высота эффективного движения экраноплана над поверхностью соизмерима с геометрическими размерами воздушного крыла, при этом положительное влияние экранного эффекта усиливается с уменьшением высоты движения. Экранный эффект известен