Биотехнология
Страница 3
В культуре клеток, тканей и органов чаще всего применяют 2,4-дихлорфенокси-уксусную кислоту (2,4-Д) , 2,4,6-трихлорфенокси-уксусную кислоту и 2-метил-4-хлорфенокси-уксусную кислоту. Обладают активностью и используются как свободные кислоты, так и растворимые в воде натриевые и аммонийные соли этих кислот, а также их эфиры. Кроме того, идут в дело еще и этаноламиновые соли. Эти гербициды были открыты одновременно в начале второй мировой войны в США и Великобритании. 2,4-Д может заменить (гетероауксин в культуре тканей, причем он в 10 с лишним раз активнее последнего вызывает образование корней, распад крахмала, усиливает дыхание. Очень слабые концентрации гербицида действуют благоприятно на прорастание семян и на развитие микроорганизмов. В Японии некогда приметили интересное заболевание молодых растении риса, вызываемое грибом Gibbcrclla fujukuroi. Наряду с гибелью растений у некоторых экземпляров, оставшихся в живых, можно было наблюдать энергичный рост стеблей и листьев. Как выяснилось, ускорение роста вызывается соединениями, являющимися продуктами обмена веществ гриба. Эти вещества (терпеноиды) , выделенные в чистом виде получили название гиббереллинов. Гиббереллины способны стимулировать не только рост, но и цветение. Их применяют в основном для ускорения прорастания ячменя при изготовлении солода и для повышения урожайности винограда. Позднее был открыт ряд соединений, оказывающих сильное стимулирующее действие на деление растительных клеток — цитокининов. Из них наиболее активен кинетин. Очень активным соединением явилась дифенилмочевина, выделенная из кокосового молока. Для выявления эффекта действия ростовых веществ необходимы поразительно малые их концентрации. Одного грамма гетероауксина, например, достаточно для 10(в13 степени) растений. Чтобы рассадить эти растения, предоставив каждому площадь питания в квадратный сантиметр, потребовалась бы пашня площадью более 900 квадратных километров. Чтобы развести грамм гетероауксина до недеятельной концентрации, необходимо 200 миллиардов литров, для доставки которых потребовалось бы 400 тысяч железнодорожных составов. Активность ростовых веществ растений на единицу массы по активности не уступает активности животных гормонов. Так, активность ауксина для овса превосходит активность эстрона для мышей в 10 раз, тороксина для человека — в 100 и андростерона для каплунов — в 1000 раз. К активным веществам, играющим существенную роль в культуре тканей, принадлежат и витамины. Так, тиамин (анейрин, витамин В1) участвует в процессе роста корней. Многократные пассажи (посевы клеток) кончиков корней без него невозможны. Для роста корней, помимо питательных веществ и тиамина, необходимы и другие витамины. Например, горох и редис нуждаются еще в никотиновой кислоте, на томаты благоприятно действует витамин B6 (еще лучше с никотиновой кислотой) . А вот лен может обойтись одним тиамином. В зернах злаков тиамин находится в алейроновом слое и, следовательно, не может присутствовать в полированном рисе. Поэтому преимущественное употребление его в пищу населением Восточной Азии приводило к вспышкам бери-бери. При автоклавировании (автоклавы — герметичные аппараты для выполнения работ при повышенной температуре и давлении для стерилизации) тиамин расщепляется на пиримидин и тиазол. Для роста корней томата, оказывается, достаточно одного тиазола, а для некоторых фитопатогенных грибов — только пиримидина (при необходимости организм сам синтезирует второй компонент тиамина) . Возможно, это имеет какое-то значение при симбиозе (например, у лишайников или микротрофных растений) , а также паразитизме. Аскорбиновая кислота (витамин С) важна для роста побегов. Введение аскорбиновой кислоты ускоряет укоренение черенков и стимулирует прорастание пыльцы. Предполагают, что она имеет отношение к обмену ростовых веществ у растений. Действие аскорбиновой кислоты основано на ее окислительно-восстановнтельных свойствах: в окислительной форме аскорбиновая кислота превращается в вещество, тормозящее рост. Не исключено, что она вызывает актизирование ростового вещества из его неактивной формы. Культивируемые штаммы дрожжей нуждаются для своего развития в веществах биоса — комплексе витаминов. К биосу принадлежит мезоинозит, бнотин (некогда скоропалительно названный витамином Н, а ныне зачисленный в группу витамина В) и пантотеновая кислота. Впрочем, пантотеновая кислота может быть заменена бета-аланином, при помощи которого дрожжи, вероятно, сами синтезируют пантотеновую кислоту. Дрожжи нуждаются и в тиамине. Все эти вещества природные штаммы дрожжей синтезируют сами, а вот культурные дрожжи такую способность утратили — у них наблюдают постепенно усиливающуюся гетеротрофность — склонность к питанию готовыми органическими веществами и потерю способности к синтезу одного или нескольких активных веществ биоса. В никотиновой кислоте нуждаются корни некоторых растений. Она встречается постоянно у высших и низших растений. Предполагается, что никотиновая кислота — универсальное активное вещество. Пиридоксин усиливает рост корней, например, у томатов и моркови. Под влиянием женского полового гормона млекопитающих животных — эстрона (фолликулярного гормона) усиливается вегетативное развитие растений. Паста с эстроном, нанесенная на цветочные почки дремы, задерживает развитие тычинок и усиливает развитие завязей. А вот тестостерон — мужской половой гормон работает прямо противоположно эстрону. В росте листьев участвуют производные пурина: мочевая кислота и аденин. Более или менее заметным образом реагирует живая плазма на действие Н+ или ОН-ионов. Движение плазмы стимулирует гистидин. Биорегуляторы используют и в растениеводстве и в животноводстве. В растениеводстве они, кстати, зачастую помогают сохранить в культуре старые сорта. Например, виноделы Франции не стремятся к внедрению новых сортов винограда. Французы любят свои вина, заслужившие за столетия мировую известность. То же можно сказать и об обыкновенном картофеле. И в Европе, и в Америке старые “проверенные” временем сорта удерживаются в производстве десятилетиями. Никакая реклама новейших сортов население не соблазняет — привычка решает выбор. Сорт картофеля Ранняя Роза (Эрли Роуз) , выведенный в США в 1861 году, до сих пор встречается если не на полях, то в огородной культуре на Американском и Европейском континентах. Еще более стар сорт Гарнет Чили — прадед большинства американских сортов и ряда европейских; его и по сей день высаживают близ Сан-Франциско. Столетний юбилей “справил” сорт Айрнш Коблер; полустолетний возраст у американских сортов Катадин и Чиппева. Кстати, и пищевой промышленности, перерабатывающей картофель в хлопья, чипсы, гарни, гранулы, в замороженный и жареный “французский картофель” , также приходится придерживаться десятилетиями “стандартных” сортов, отвечающих условиям переработки, ибо сортов картофеля, пригодных для выработки некоторых продуктов, крайне мало. После освоения процесса и техники переработки одного-двух сортов заводам экономически невыгодно “настраиваться” (перестраивать технологию и обновлять технику) на новые сорта картофеля. Тем более что даже такое “простое” требование пищевой промышленности к селекционерам, как непременная устойчивость сортов к механическим повреждениям, повергает последних в глубокое уныние (а подобных требований к перерабатываемому сорту десятки) . Вот почему биотехнологи стремятся как-то помочь старым апробированным сортам — улучшить их продуктивность, качество или товарный вид. Привередливые американцы, например, предпочитают апельсины ярко-оранжевой окраски. Химики предложили для удовлетворения вкуса потребителей обрабатывать апельсины веществом с малоудобоваримым названием: (2-пара-диэтиламиноэтоксибензаль) — пара-метоксиацетонфенон. За десять дней обработки этим биорегулятором количество каротиноидов возросло в 16 раз. И окраска стала много живее, и полезного провитамина А значительно прибавилось. Правда, химики с этим препаратом несколько “перехимичили” : после обработки в корке нередко образовывались красные каро