ГАМЕТОЦИДЫ И ИХ ПРИМЕНЕНИЕ В СЕЛЕКЦИИ
Страница 3
•отмечена обратная корреляция во взаимодействии микроспор .и тапетума. Большинство микроспор становятся крупными, сильно вакуолизированньши, с ядром, прижатым к клеточной .стенке. Клетки тапетума образуют плотную оболочку вокруг
•полости пыльцевого мешка. Часть микроспор дегенерирует до вакуолизации, но большее их количество абортируется при цветении [94].
Аберрация микроспорогенеза в результате продленного дня, по-видимому, связана с ранним распадом клеток тапетума. Подобный эффект может быть достигнут путем обработки ауксином, высокая концентрация которого обнаружена в тканях растений при длительном фотопериоде [78]. Это подтверждает гипотезу о влиянии фотопериода на пол путем регуляции метаболизма ауксинов в растительных тканях [84, 88].
Считают также, что нарушение функций тапетума в питании развивающихся микроспор не является непосредственной и единственной причиной абортивности пыльцы [46, 107].
При сравнительных исследованиях пыльцы и развития
•пыльников линий пшеницы с ЦМС и нормальных растений установлено, что деградативные процессы в развивающихся пыльцевых зернах начинаются с несбалансированного поступления питательных веществ в тапетум в результате нарушений функциональной активности васкулярной системы тычиночных нитей [31, 32, 87]. Последние у стерильных растений имели слабо дифференцированные васкулярные тяжи (либо они отсутствовали), в то время как у нормальных тычинок сосудистые элементы были хорошо дифференцированы на
9
ксилему и флоему. Наблюдаемое снижение аккумулирования крахмала в тканях тапетума и отсутствие запасного крахмала в зрелых микроспорах является следствием редукции передвижения растворов (в частности углеводов) в тычинки стерильных растений [87]. Нарушение структуры васкулярных элементов при воздействии веществ с гаметоцидной активностью может быть одним из аспектов их действия, тем более, что обработка гаметоци.д'а'ми, как правило, сопровождается уменьшением размеров пыльников и длины тычиночных нитей [20, 59].
Преждевременное деградирование тапетума 'или. более длительное существование интактных клеток тапетума в пыльниках с мужской стерильностью, индуцированной химическими препаратами, по-видимому, является результатом взаимосвязи химически активных веществ с деградативными энзимами (несвоевременная их индукция или блокирование) [56, 60, 74].
При исследовании причин абортивности пыльцы установлено повышение активности кислых фосфатаз в тканях нормальных пыльников до стадии тетрад, после которой активность энзимтав резко снижалась с последующим дегенерирова-нием тапетума [56]. В тканях стерильных пыльников активность энзимов была гораздо ниже, и набухший тапетум раздавливал микроспоры [82].
.Подобный дисбаланс в энзиматической системе стерильных пыльников был отмечен S. Izhar и R. Frankel [82] при сравнительном изучении каллазной активности. В связи с тем, что период развития каллазной активности четко установлен во времени и имеет определенный оптимум кислотности (р.Н 5), авторы измерили in vivo pH различных стадий микроспорогенеза. У фертильных пыльников вплоть до поздней стадии тетрад р.Н составляла около 7, затем снижалась до 6, что сопровождалось растворением каллозы. В пыльниках растений линий с ЦМС pH обычно или низкая — тогда энзиматический распад каллозы материнской клетки пыльцы начинается раньше нормальных сроков, или высокая — тогда наблюдается сильная активность энзима, начиная с профазы 1 в течение всего мейоза, вызывая цитологические нарушения. Преждевременное повышение каллазной активности может быть причиной немедленного разрушения материнской клетки пыльцы. Торможение энэиматической активности кал-лазы блокирует распад каллозной оболочки материнских клеток пыльцы, в результате микроспоры теряют свои нормальные очертания и деградируют.
Эти исследования позволили выявить новые причины абортивности пыльцы и показали, что в основе индукции мужской
10
стерильности лежит дисбаланс в четко скоординированные биохимических реакциях и нарушения в последовательности -„.нзиматических циклов. Изменение четкого ритма энзиматической активности каллазы приводит к деградации развивающихся микроспор [2, 3, 4]. Экспериментально установлено, что период формирования тетрад является наиболее эффективным для применения препаратов с гаметоцидной активностью.
.Возможное участие гаметоцидов в процессах, обусловливающих торможение или .преждевременное освобождение микроспор из материнской клетки пыльцы, вероятно, связано с влиянием соединений с гаметоцндными свойствами на уровни энзиматической активности каллазы. Своевременная индукция и развитие каллазной активности — критический период для нормального развития мужского гаметофита.
Для успешных поисков новых веществ, обладающих гаметоцидной активностью, необходимо располагать достаточной информацией о метаболизме спорогенной ткани и тапетума, а также о взаимосвязи вх обмена. Электронно-микроскопические наблюдения показали, что при нормальной метаболической взаимосвязи между клетками тапетума и развивающимися пыльцевыми зернами не наблюдается никаких аномалий [78]. Согласно имеющимся данным трудно определить, тапетум или спороциты являются 'инициатором -в нарушении взаимосвязи.
Одним из возможных путей выяснения механизма индукции мужской стерильности является исследование биохимической активности тканей. При исследовании пыльников и экстр-актов листьев пшеницы установлено, что мужская сте' рильность пыльцы сопровождается репрессией активности терминальных оксидаз. Уровень активности цитохромоксида-зы в тканях фертильных растений по сравнению со стерильными гораздо выше [18, 27]. Подобное явление отмечено в тканях растений с генетической мужской стерильностью [46]. Цитохромоксидаза — неотъемлемый компонент мито-хондрий, поэтому низкую активность дыхательных энзимов растений с ЦМС можно объяснить дисбалансом митохондри-альных энзиматических систем [128].
Митохондрии, выделенные из стерильного материала (проростки пшеницы с ЦМС), характеризовались более высокой окислительной фосфорилазной активностью, чем мито-хондрии из проростков с нормальной цитоплазмой [129]. Биохимические исследования и наблюдения электронной микроскопии подтвердили, что мужская стерильность тесно связана с изменением функционального состояния этих структур клетки {15, 16, 63]. Восстановление фертильности в линиях
11
с ЦМ'С сопровождается одновременным устранением отклонений в структуре цитоплазматических органелл и различных нарушений в метаболических процессах [27, 46]. Получены дополнительные доказательства в подтверждение гипотезы, что изменения в метаболизме митохондрий связаны с механизмами индукции мужской стерильности. Предполагается, что включение последних вызывает репрессию синтеза белков внутренней мембраны митохондрий [63, 114].
Однако было бы ошибочным считать, что только функциональная активность митохондрий является основой возникновения цитоплазматической мужской стерильности. Ее индукция базируется на изменениях в широком диапазоне биохимических реакций, обусловливающих нарушения в молекулярных компонентах различных клеточных структур и цитоплазмы, что сопровождается появлением белков с анормальной эн-зиматической активностью. В результате этих изменений возникает дисбаланс в энзиматических системах или же полное их блокирование[8, 15, 20,82].
Для получения ЦМС путем химической индукции у сельскохозяйственных культур необходимо детальное изучение метаболизма ДНК, РНОК и белка в стерильном и фертильном материале с цитологическим и цитохимическим сопоставлением полученной информации. Изменения в содержании ДНК, РНК и белка в пыльниках кукурузы изучали методами цитохимии и микроденситометрии [101]. В процессе спорогенеза различали три пика интенсивного синтеза нуклеиновых кислот. Первый пик соответствует премейотическому периоду и ранней профазе, второй — приходится на интервал между поздним мейозом и стадией тетрад, третий (наименьший) — соответствует периоду, предшествующему митозу микроспор. В течение первого пика установлена самая высокая скорость роста спорогенной ткани и тапетума при активном синтезе молекулярных компонентов в обеих тканях. Во втором пике активный синтез ДНК, PlHiK и белка осуществляется в основном в тканях тапетума. Торможение роста и параллельно синтеза этих молекулярных структур в спорах начинается в период третьего пика, при дегенерировании тапетума. В настоящее время тапетум рассматривают как возможный источник предшественников нуклеиновых кислот для формирующихся микроспор, которые получают материал для синтеза в форме растворимых предшественников или в форме ДНК с низким молекулярным весом [111, 130].