ТРАНСПОРТ ВЕЩЕСТВ ЧЕРЕЗ БИОЛОГИЧЕСКИЕ МЕМБРАННЫ

Страница 2

- 5 - 2.4. Некоторые транспортные белки просто переносят какое-ли- бо растворенное вещество с одной стороны мембраны на другую. Та- кой перенос называется унипортом. Другие белки являются контранс- портными системами. В них происходит: а) перенос одного вещества зависит от одновременного / последо- вательного / переноса другого вещества в том же направлении (симпорт). б) перенос одного вещества зависит от одновременного / последо- вательного / переноса другого вещества в противоположном направлении (антипорт). Например, большинство животных клеток поглощает глюкозу из внеклеточной жидкости, где ее концентрация высока путем пассивно- го транспорта осуществляемого белком, который работает как уни- порт. В то же время, клетки кишечника и почек поглощают ее из лю- менального пространства кишечника и из почечных канальцев, где ее концентрация очень мала, с помощью симпорта глюкозы и ионов Na. (рис. 2.3.) Итак, мы рассмотрели осноаные виды пассивного транспорта ма- лых молекул через биологические мембраны. 2.5. Часто бывает необходимым обеспечить перенос через мемб- рану молекул против их электрохимического градиента. Такой про- цесс называется активным транспортом и осуществляется белками-пе- реносчиками, деятельность которых требует затрат энергии. Если связать белок-переносчик с источником энергии, можно получить ме- ханизм, обеспечивающий активный транспорт веществ через мембрану. (рис. 2.4.). Одним из главных источников энергии в клетке является гидро- лиз АТФ до АДФ и фосфата. На этом явлении основан важный для жиз- недеятельности клетки механизм (Na + K)-насос (рис. 2.5). Он слу- жит прекрасным примером активного транспорта ионов. Концентрация K внутри клетки в 10-20 раз выше, чем снаружи. Для Na картина противоположная. Такую разницу конценраций обеспечивает работа (Na + K)-насоса, который активно перекачивает Na из клетки, а K в клетку. Известно, что на работу (Na + K)-насоса тратится почти треть всей энергии необходимой для жизнедеятельности клетки. Вы- шеуказанная разность концентраций поддерживается со следующими целями:

- 6 - 1) Регулировка объема клеток за счет осмотических эффектов. 2) Вторичный транспорт веществ (будет рассмотрен ниже). Опытным путем было установлено, что: 1) Транспорт ионов Na и K тесно связан с гидролизом АТФ и не может осуществляться без него. 2) Na и АТФ должны находиться внутри клетки, а K снаружи. 3) Вещество уабаин ингибирует АТФазу только находясь вне клетки, где он конкурирует за участок связывания с K. (Na + K)-АТФаза активно транспортирует Na наружу а K внутрь клетки. При гидролизе одной молекулы АТФ три иона Na выкачиваются из клетки а два иона K попадают в нее (рис. 2.6.). 1) Na связывается с белком. 2) Фосфорилирование АТФазы индуцирует конформационные изменения в белке, в результате чего ъ 3) Na переносится на внешнюю сторону мембраны и высвобо- ждается. 4) Связывание K на внешней поверхности. 5) Дефосфорилирование. 6) Высвобождение K и возврат белка в первоначальное состо- яние. По всей вероятности в (Na + K)-насосе есть три участка свя- зывания Na и два участка связывания K. (Na + K)-насос можно зас- тавить работать в противоположном направлении и синтезировать АТФ. Если увеличить концентрации ионов с соответствующих сторон от мембраны, они будут проходить через нее в соответствии со сво- ими электрохимическими градиентами, а АТФ будет синтезироваться из ортофосфата и АДФ с помощью (Na + K)-АТФазы. 2.6. Если бы у клетки не существовало систем регуляции осмо- тического давления, то концентрация растворенных веществ внутри нее оказалась бы больше их внешних концентраций. Тогда концентра- ция воды в клетке была бы меньшей, чем ее концентрация снаружи. Вследствие этого, происходил бы постоянный приток воды в клетку и ее разрыв. К счастью, животные клетки и бактерии контролируют ос- мотическое давление в своих клетках с помощью активного выкачива- ния неорганических ионов таких как Na. Поэтому их общая концент- рация внутри клетки ниже чем снаружи.

- 7 - Клетки растений имеют жесткие стенки, которые предохраняют их от набухания. Многие простейшие избегают разрыва от поступаю- щей внутрь клетки воды с помощью специальных механизмов, которые регулярно выбрасывают поступающую воду. 2.7. Другим важным видом активного транспорта является ак- тивный транспорт с помощью ионных градиентов (рис. 2.7.). Такой тип проникновения через мембрану осуществляют некоторые транс- портные белки, работающие по принципу симпорта или антипорта с какими-нибудь ионами, электрохимический градиент которых доста- точно высок. В животных клетках контранспортируемым ионом обычно является Na. Его электрохимический градиент обеспечивает энергией активный транспорт других молекул. Для примера рассмотрим работу насоса, который перекачивает глюкозу. насос случайным образом ос- циллирует между состояниями "пинг" и "понг". Na связывается с белком в обоих его состояниях и при этом увеличивает сродство последнего к глюкозе. Вне клетки присоединение Na, а значит и глюкозы, происходит чаще чем внутри. Поэтому глюкоза перекачива- ется в клетку. Итак, наряду с пассивным транспортом ионов Na происходит симпорт глюкозы. Строго говоря, необходимая энергия для работы этого механизма запасается в ходе работы (Na + K)-насоса в виде электрохимического потенциала ионов Na. У бактерий и растений большинство систем активного транспорта такого вида используют в качестве контранспортируемого иона ион H. К примеру, транспорт большей части сахаров и аминокислот в бактериальные клетки обус- ловлен градиентом H. 2.8. Один из самых интересных способов активного транспорта состоит в том, чтобы каким-либо образом удержать внутри клетки молекулу, вошедшую туда в соответствии со своим электрохимическим потенциалом. Так, некоторые бактерии фосфорилируют молекулы отдельных са- харов, в результате чего они заряжаются и не могут выйти обратно. Такой вид транспорта называется векторным переносом групп. 2.9. Для сквозного транспорта веществ через клетку существу- ют особые механизмы. Например, в плазматической мембране клеток

- 8 - эпителия кишечника белки-переносчики распределены ассиметрично. (рис. 2.8.). Благодаря этому, обеспечивается транспорт глюкзы сквозь клетку во внеклеточную жидкость откуда она поступает в кровь. Глюкоза проникает в клетку с помощью симпорта, контранс- портным ионом в котором является Na, и выходит из нее путем об- легченной диффузии с помощью другого транспортного белка. 2.10. Рассмотрим некоторые дополнительные функции транспор- теров работающих по принципу антипорта. Почти все клетки позво- ночных имеют в составе своей плазматической мемраны (Na + H) пе- реносчик-обменник. Этот механизм регулирует pH внутри клетки. Вы- вод ионов H из клетки сопряжен с транспортировкой в нее ионов Na. При этом увеличивается значение pH внутри клетки. Такой обменник имеет особый регуляторный участок, который активизирует его рабо- ту при уменьшении pH. Наряду с этим , у многих клеток есть меха- низм, обеспечивающий обратный эффект. Это (Cl + HCO)-обменник, который уменьшает значение pH. 2.11. Одним из самых интересных примеров транспорта веществ через биологические мембраны является взаимодействие гормонов с клеткой. Как известно, гормонами называют спецефические химичес- кие соединения, которые оказывают значительное влияние на процес- сы обмена веществ и функционирование органов. В отличие от фер- ментов или витаминов гормоны не изменяют скорость отдельных реак- ций, а существенно влияют на некие фундаментальные процессы в ор- ганизме, которые затем сказываются на самых различных сторонах жизнедеятельности организма. Некоторые виды гормонов проникают в клетку и регулируют в ней синтез информационных РНК. Другие гормоны, называемые пептид- ными (инсулин, гормон роста) взаимодействуют со специальными мембранными белками, которые, в свою очередь, продуцируют в клет- ке вещества, влияющие на некоторые происходящие в ней процессы. 3. ПЕРЕНОС ЧЕРЕЗ МЕМБРАНУ МАКРОМОЛЕКУЛ И ЧАСТИЦ В заключение рассмотрим основные механизмы транспортировки через биологические мембраны крупных частиц и макромолекул.