Термины распределение ключей и управление ключами относятся к процессам системы обработки информации, содержанием которых является составление и распределение ключей между пользователями.
Электронной (цифровой) подписью называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.
Криптостойкостью называется характеристика шифра, определяющая его стойкость к дешифрованию без знания ключа (т.е. криптоанализу). Имеется несколько показателей криптостойкости, среди которых:
· количество всех возможных ключей;
· среднее время, необходимое для криптоанализа.
Преобразование Tk определяется соответствующим алгоритмом и значением параметра k. Эффективность шифрования с целью защиты информации зависит от сохранения тайны ключа и криптостойкости шифра.
Процесс криптографического закрытия данных может осуществляться как программно, так и аппаратно. Аппаратная реализация отличается существенно большей стоимостью, однако ей присущи и преимущества: высокая производительность, простота, защищенность и т.д. Программная реализация более практична, допускает известную гибкость в использовании.
Для современных криптографических систем защиты информации сформулированы следующие общепринятые требования:
· зашифрованное сообщение должно поддаваться чтению только при наличии ключа;
· число операций, необходимых для определения использованного ключа шифрования по фрагменту шифрованного сообщения и соответствующего ему открытого текста, должно быть не меньше общего числа возможных ключей;
· число операций, необходимых для расшифровывания информации путем перебора всевозможных ключей должно иметь строгую нижнюю оценку и выходить за пределы возможностей современных компьютеров (с учетом возможности использования сетевых вычислений);
· знание алгоритма шифрования не должно влиять на надежность защиты;
· незначительное изменение ключа должно приводить к существенному изменению вида зашифрованного сообщения даже при использовании одного и того же ключа;
· структурные элементы алгоритма шифрования должны быть неизменными;
· дополнительные биты, вводимые в сообщение в процессе шифрования, должен быть полностью и надежно скрыты в шифрованном тексте;
· длина шифрованного текста должна быть равной длине исходного текста;
· не должно быть простых и легко устанавливаемых зависимостью между ключами, последовательно используемыми в процессе шифрования;
· любой ключ из множества возможных должен обеспечивать надежную защиту информации;
· алгоритм должен допускать как программную, так и аппаратную реализацию, при этом изменение длины ключа не должно вести к качественному ухудшению алгоритма шифрования.
Многоалфавитная подстановка - наиболее простой вид преобразований, заключающийся в замене символов исходного текста на другие (того же алфавита) по более или менее сложному правилу. Для обеспечения высокой криптостойкости требуется использование больших ключей.
Перестановки - несложный метод криптографического преобразования. Используется как правило в сочетании с другими методами.
Гаммирование - этот метод заключается в наложении на исходный текст некоторой псевдослучайной последовательности, генерируемой на основе ключа.
Блочные шифры собой последовательность (с возможным повторением и чередованием) основных методов преобразования, применяемую к блоку (части) шифруемого текста. Блочные шифры на практике встречаются чаще, чем “чистые” преобразования того или иного класса в силу их более высокой криптостойкости. Российский и американский стандарты шифрования основаны именно на этом классе шифров.
Перестановкой s набора целых чисел (0,1, .,N-1) называется его переупорядочение. Для того чтобы показать, что целое i перемещено из позиции i в позицию s(i), где 0 £ (i) < n, будем использовать запись
s=(s(0), s(1), ., s(N-1)).
Число перестановок из (0,1, .,N-1) равно n!=1*2* .*(N-1)*N. Введем обозначение s для взаимно-однозначного отображения (гомоморфизма) набора S={s0,s1, .,sN-1}, состоящего из n элементов, на себя.
s: S ® S
s: si ® ss(i), 0 £ i < n
Будем говорить, что в этом смысле s является перестановкой элементов S. И, наоборот, автоморфизм S соответствует перестановке целых чисел (0,1,2, , n-1).
Криптографическим преобразованием T для алфавита Zm называется последовательность автоморфизмов: T={T(n):1£n<¥}
T(n): Zm,n®Zm,n, 1£n<¥
Каждое T(n) является, таким образом, перестановкой n-грамм из Zm,n.
Поскольку T(i) и T(j) могут быть определены независимо при i¹j, число криптографических преобразований исходного текста размерности n равно (mn)![1]. Оно возрастает непропорционально при увеличении m и n: так, при m=33 и n=2 число различных криптографических преобразований равно 1089!. Отсюда следует, что потенциально существует большое число отображений исходного текста в шифрованный.
Практическая реализация криптографических систем требует, чтобы преобразования {Tk: kÎK} были определены алгоритмами, зависящими от относительно небольшого числа параметров (ключей).
1.2. Системы подстановок
Определение Подстановкой p на алфавите Zm называется автоморфизм Zm, при котором буквы исходного текста t замещены буквами шифрованного текста p(t):
Zm à Zm; p: t à p(t).
Набор всех подстановок называется симметрической группой Zm è будет в дальнейшем обозначаться как SYM(Zm).
Утверждение SYM(Zm) c операцией произведения является группой, т.е. операцией, обладающей следующими свойствами:
1.Замкнутость: произведение подстановок p1p2 является подстановкой:
p: tàp1(p2(t)).
2.Ассоциативность: результат произведения p1p2p3 не зависит от порядка расстановки скобок:
(p1p2)p3=p1(p2p3)
3.Существование нейтрального элемента: постановка i, определяемая как i(t)=t, 0£t<m, является нейтральным элементом SYM(Zm) по операции умножения: ip=pi для "pÎSYM(Zm).