Лазер и его действие на живые ткани
Страница 6
тивности биологических мембран, которые принимают прямое и очень важное участие во всех функциях клетки, приводит к изменению биоэлектрических процессов, к увеличению активности транспорта веществ через мембрану, идущего на направлении, противоположном градиенту химического и электрохимического потенциала, усиливает основные биоэнергетические процессы, в частности. Окислительное фофсфорилирование. Влияние низкоэнергетического лазерного излучения на конформационные переходы макромолекул проблематично. Однако, сопоставление энергетической мощности фотонов даже красной и ближней инфракрасной части спектра электромагнитного излучения и энергии, необходимо для конформационных изменений многих биологических молекул, свидетельствующих о возможности этого процесса. Так 1Э для гелий-неонового лазера (длина волны =633 нм) равен примерно 194 кДж/моль, для полупроводникового инфракрасного лазера (длина волны =870 нм) 1Э - около 136 кДж/моль. В то же время для образования спирального участка биополимера из четырех звеньев необходимо около 11 кДж/моль, для конформационного перехода молекул ДНК из неустойчивой формы в устойчивую необходимо около 13 кДж/моль, а энергия внутреннего вращения пептидной связи равна около 84 кДж/моль. Даже с учетом диссипации энергии лазерного излучения на различных уровнях остаточной энергии будет, вероятно, достаточно для влияния на конформационные изменения макромолекул. Что касается жидкокристаллических структур биообъектов, в первую очередь клеточных мембран, то в настоящее время доказано влияние световой энергии на конформационные переходы. Под действием низкоэнергетического лазерного излучения изменяется форма двойного липидного слоя клеточной мембраны, что приводит к переориентировке головок липидов. Поскольку вблизи t=+37 C двойной липидный слой находится в непосредственной близости к точке фазового перехода, т.е. в очень неустойчивом состоянии, поэтому дополнительная энергия, полученная при лазерном воздействии, инициирует фазовый переход клеточной мембраны. Структурная альтерация вещества - это переход между структурно-неэквивалентными метастабильными состояниями с различными физико-химическими свойствами. Считается, что жидкости не обладают свойствами полиморфизма и не способны существовать в различных структурных формах при одинаковых химическом составе и внешних условиях. Однако в сложных многокомпонентных растворах, к которым относятся биологические жидкости, структурные эффекты играют важнейшую роль и приводит к исключительному многообразию структурных форм растворов. В эксперименте с лиотропными жидкокристаллическими системами, которые по степени упорядоченности и структурной сложности приближаются к биологическим гуморальным средам и обладают уникальной чувствительностью к слабым внешним возмущениям различной физической природы, установлено, что воздействие низкоэнергетического лазерного воздействия гелий-неонового лазера (длина волны =633) индуцирует в этих системах структурно-оптические эффекты. Аналогичные результаты были получены и при лазерном облучении плазмы крови и синовиальной жидкости. Следовательно, биожидкости обладают структурной альтерацией, а структура биораствора может играть роль матрицы, на которой протекают все биохимические реакции. Накопление в биосистеме участков с измененной структурой вызывает неспецифическую модификацию энергетики и кинетики метаболических процессов, протекающих в водной матрице биожидкости, и последующие эффекты “биостимуляции” . Образование продуктов фотолиза (первичных фото продуктов и первичных стабильных химических продуктов) , изменение вследствие этих и других реакций pH внутреннего среды участка лазерного воздействия инициирует физиолого-биохимические процессы, запускает различные биологические реакции, многие из которых определены и детализированы клинико-экспериментальными исследованиями. При изучении изменений содержания нуклеиновых кислот (ДНК, РНК) в ядрах клеток различных тканей человека под действием низкоэнергетического лазерного излучения определено достоверное увеличение биосинтеза этих кислот, а также увеличение митохондрий и рибосом, что свидетельствует об активизации ядерного аппарата, системы ДНК-РНК-белок и биосинтетических процессов в клетках. Анализ фотоиндуцированных изменений активности ферментов дает ценную информацию о первичных биохимических механизмах стимулирующего действия излучения на функциональную активность клетки. Исследование активности НАДН- и НАД+ -глутаматдегидрогеназы, изоферментов аспрататаминотрасферазы, функционирующих на стыке обмена белков и углеводов, а также ферментов цикла трикарбоновых кислот, свидетельствуют об увеличении активности этих ферментов при воздействии стимулирующими дозами низкоэнергетического лазерного излучения, что в свою очередь активизирует окислительно-восстановительные процессы. Дальнейшие исследования показали, что стимуляция биоэнергетических ферментов приводит к увеличению в тканях АТФ. Имеется немало публикаций, указывающих на усиление кислородного обмена, увеличение поглощения кислорода тканями организма под воздействием низкоэнергетического лазерного излучения. С помощью полярографии в многочисленных прямых исследованиях на больных было показано увеличение напряжения кислорода в тканях под лазерным воздействием. Различными методами исследования (рео- и фото плетизмографии, реовазографии, осциллографии и др.) было определено повышение скорости кровотока при воздействии на ткани низкоэнергетическим лазерным излучением, а витальная микроскопия позволила точно установить реализацию эффекта лазерного воздействия в различных отделах лазерного русла, показала, что в процессе облучения в патологической ткани увеличивается число функционирующих капилляров и новых коллатералей. Воздействие лазерным излучением на поврежденную ткань приводит к уменьшению интерстициального и внутриклеточного отека, что связано с повышением кровотока в тканях, активации транспорта вещества через сосудистую стенку, а также с интенсивным формированием сосудов, особенно капилляров. Многие исследователи указывают на укорочение фаз воспалительного процесса при лазерном облучении патологического очага; отмечено, в первую очередь, подавление экссудативной и инфильтрационной реакции. Пролиферация клеток является одним из важнейших звеньев сложной цепи реакций, определяющих скорость роста и регенерации тканей, кроветворение, активность имунной системы и другие обще организменные процессы. Многочисленные экспериментальные исследования с различными культурами клеток, в том числе с клетками тканей эмбриона человека, убедительно свидетельствуют, что низкоэнергетическое лазерное излучение в пределах плотности потока мощности 0,1-100 мВт/см2 стимулирует митотическую активность клеток, а это является прямым адекватным показателем пролиферативной активности. Лазерное воздействие понижает рецепторную чувствительность тканей, что является следствием уменьшения их отечности, а также прямого лазерного луча на нервные окончания. Рассмотрим теперь более подробно механизм действия лазерного излучения. Как много мы знаем и как мало мы понимаем . А. Эйнштейн Механизм терапевтического действия низкоэнергетического лазерного излучения Недипломированный, нетитулованный, но всемирно известный и признананный русский ученый Н. В. Тимофеев-Ресовский считал глупыми претензии исследователей на то, что они изучают какие-то механизмы. Он говорил: “Вы получаете факты, вы получаете феноменологию. Механизм - продукт ваших мыслей. Вы факты связываете. Вот и все” . Однако, в современной научной литературе, особенно медицинской, термин “механизм действия” настолько прочно вошел в обиход, что, даже отдавая себе отчет в его неполной правомерности, мы не сочли необходимым отказаться от него. Основной закон фотобиологии гласит, что биологический эффект вызывает лишь излучение такой длины волны, при которой оно поглощается молекулами или фоторецепторами тех или иных структурных компонентов клеток. Однако, спектры поглощения различных макромолекул весьма разбросаны: так пептидны