О субстрате следов памяти в мозге
О субстрате следов памяти в мозге
О субстрате следов памяти в мозге Морфофункциональным субстратом памяти равно как эмоций и мотивационных состояний, являются, прежде всего, структуры лимбической системы. Если говорить о сущности физиологических и структурных изменений в мозге, могущих выступать в качестве носителя следов памяти, то эти изменения должны отвечать двум требованиям: быть достаточно длительными (в случае долговременной памяти— сохраняться, по-видимому, всю жизнь) , и в то же время не сказываться существенно на текущих процессах в нейроне, характеризующих его физическую активность (возбудимость, генерирование синаптических потенциалов, пика действия и т.п.) . Очевидно, природа таких изменений будет существенно различна в случаях кратковременной и долговременной памяти.
О природе следов кратковременной памяти Для решения вопроса о природе носителя кратковременной памяти обращаются с одной стороны, к изучению нейронных процессов в мозге, вызываемых действием какого-либо раздражителя и сохраняющихся некоторое время после прекращения этого действия, а с другой стороны—к анализу некоторых электрофизиологических феноменов, могущих рассматриваться в качестве своеобразных проявлений процессов памяти в конкретных экспериментальных условиях. К подобным процессам и феноменам, выдвинутым в качестве возможного носителя кратковременной памяти, относятся посттетаническое потенциирование (41) , относительно стойкие поляризационные сдвиги (В. С. Русинов, Моррелл) , персеверационные процессы, представляемые обычно в виде циркуляции импульсов в нейронных сетях (Мюллер и Пильзекер, Хебб, Джерард) , изменения в частотной структуре или разовых сдвигах ЭЭГ-ритмов (М. Н. Ливанов и К. Л. Поляков, Майкопский, Джон с сотр., Эйди и др.) и некоторые другие. В настоящее время каждое из выдвинутых предположений сталкивается с известными, то более, то менее серьезными возражениями. Так, посттетаническое потенциирование, являющееся пресинаптическим феноменом, в условиях реальных частот и продолжительностей импульсаций через одиночное волокно в центральной нервной системе вряд ли может обладать достаточной длительностью, характеризующей кратковременную память (десятки минут, часы) . Неясно, как такое волокно может использоваться в фазу кратковременной памяти для “посторонних” импульсаций, сохраняя при этом избирательность для конкретных следов (очевидно, что “запирание” волокна на минуты и часы вряд ли допустимо) , как пресинаптические процессы посттетанического потенциирования могут формировать структурные изменения долговременной памяти. Наконец, перед лицом исключительной пластичности мозговых нейродинамических структур, дающей возможность лишь в вероятностном плане определить участие конкретных нейронов в конкретном акте осуществления функции, посттетаническое потенциирование в силу своей известной статичности требует, как носитель кратковременной памяти, такой избыточной представленности в мозге, какая вряд ли может иметь место в реальных условиях обычной жизнедеятельности организма. Фессар попытался устранить подобные возражения путем связывания феномена посттетанического потенциирования не только с ритмом вызванной данным стимулом импульсаций, но и со спонтанными импульсациями (вернее, с алгебраической суммацией вызванных и спонтанных импульсаций) , а также с деятельностью мультисенсорных нейронов.
Временная организация процессов памяти в мозге и гипотеза консолидации В первую очередь следует остановиться на весьма важных экспериментальных данных, касающихся общей структуры процессов памяти в мозге и приведших к обоснованию гипотезы о так называемой консолидации следов памяти. Исследования И. П. Павлова и его школы подчеркнули значение условного рефлекса как физиологического явления, базирующегося на процессах фиксации следов в мозге и могущего быть использованным в качестве индикатора этих процессов. Поэтому приемы экспериментального исследования специальных свойств памяти базировались в значительной степени на учете (в качестве ее характеристик) скорости выработки и длительности сохранения условного рефлекса, главным образом так называемого инструментального условного рефлекса и двигательного навыка побежки в лабиринте. Другим важным направлением анализа физиологических механизмов памяти было изучение случаев ее клинической патологии. Было показано, что память в мозге основывается на двух группах явлений, связанных временной последовательностью как две фазы фиксации следа. Эти две фазы памяти отличаются разной чувствительностью к определенным воздействиям, угнетающим или дезорганизующим нейронную импульсацию в мозге. Так, Дункан показал, что если при выработке условного рефлекса избегания у крыс после каждой пробы подвергать животное через разные интервалы времени (от 20 сек. до 14 час.) электросудорожному шоку, то отмечается нарушение выработки условного рефлекса, которое тем больше выражено, чем короче интервал между пробой и электрошоком. При интервале до 15 мин. выработка условного рефлекса оказалась невозможной, а свыше 1 часа — протекала нормально. Эти данные были затем подтверждены при сходной постановке опытов многими исследователями, которые обнаружили все тот же временной интервал чувствительности к одиночному электрошоку после каждой пробы по выработке условного рефлекса, равный 40— 60 мин. Возражения Кунса и Миллера, которые считали, что в данной постановке опытов решающую роль играла конфликтная оборонительная ситуация, приводившая к выработке оборонительного условного рефлекса на обстановку, а не нарушение процессов запоминания, были опровергнуты экспериментами Мак Гоу и Мадсен, Пирлмен с сотр., Эссман с сотр. и др. В этих опытах электросудорожный шок применялся в условиях выработки оборонительного условного рефлекса с одного подкрепления и приводил в рамках тех же временных интервалов к нарушению памяти и отсутствию избегания при повторных предъявленьях оборонительной ситуации. Тенен показал амнезирующее влияние однократного электросудорожного шока и на пищедобывательный навык. Важно отметить, что все перечисленные воздействия—электросудорожный шок, аноксия, гипотермия, наркоз—оказывали угнетающее влияние на запоминание событий, лишь непосредственно (в течение секунд, минут—до часа) им предшествовавших, причем тем более сильное, чем короче был интервал между событием, подлежащим запоминанию, и воздействием. В отношении же событий (выработанных навыков, условных рефлексов) , происходивших ранее, подобные воздействия заметного эффекта не оказывали, даже если они полностью подавляли на время всякую нейронную активность в мозге (например, глубокая гипотермия) . Приведенные факты и послужили основой для упомянутого вывода о наличии двух фаз фиксации опыта, имеющих в своей основе изменения в мозге различной природы: 1) фазы кратковременной памяти, связанной с нсйродпнамическими процессами как носителем следовых явлений, нарушаемой воздействиями, угнетающими или дезорганизующими нейронную активность, и длящейся около 1 часа, и наступающей затем 2) фазы долговременной памяти, связанной со стабильными структурными изменениями, не нарушаемой упомянутыми воздействиями и длящейся, очевидно, всю жизнь. Период времени, предшествующий наступлению фазы долговременной памяти, связан, по-видимому, с процессами консолидации следа, т.е. процессами формирования структурных изменений под влиянием соответствующих нейродинамических процессов. Такова сущность гипотезы консолидации следов памяти, выдвинутой впервые в начале века Мюллером и Пильзекером и принятой в настоящее время большинством исследователей. Эти выводы о двух фазах памяти, с наличием процессов консолидации следов, находят свое подтверждение и в результатах клинических наблюдений. Так, явления посттравматической ретроградной амнезии, сводящиеся обычно к необратимой утрате следов о событиях, непосредственно предшествовавших травме мозга (секунды, минуты—в зависимости от тяжести травмы) , при сохранности в памяти событий отстоящих от травмы на более длительный период (корсаковский синдром) . Мысль о связи стойких поляризационных сдвигов с явлениями памяти возникла в связи с известными экспериментами В. С. Русинова с сотр. по созданию искусственного доминантного очага в участке коры больших полушарий путем слабой анодической поляризации последнего. При этом было обнаружено, что во время поляризации коркового эффекторного центра лапы кролика устанавливается связь центра с любыми внешними раздражителями (звук, свет) , которая продолжает сохраняться (в отношении лишь применявшегося ранее раздражителя) в течение 20—30 мин. после выключения поляризующего тока. Моррелл подтвердил эти данные, а также показал, что одиночные нейроны в зоне поляризации сохраняют после выключения последней способность воспроизводить в ответ на единичный стимул (вспышку света) ритм стимулов, применявшийся во время поляризации. Изучая влияние поляризации коры на осуществление условного рефлекса избегания (после достижения критерия 70—75% правильных ответов) , Моррелл пришел к выводу, что анодическая поляризация способствует сохранению следов памяти. Следует, однако, указать, что приведенные данные могут быть истолкованы как показатель сдвигов, лишь способствующих выявлению следов памяти (носителем которых могут быть другие процессы в мозге) путем снижения порога возбудимости соответствующих нейронных структур. Кроме того, стойкие поляризационные сдвиги могли бы претендовать на роль носителя следов кратковременной памяти лишь в том случае, если бы была показана их избирательная локализация на уровне одиночных нейронов или даже их частей (как это представлено в гипотезе Н. А. Аладжаловой) . Сдвиги же, применявшиеся В. С. Русиновым и Морреллом, слишком диффузны, чтобы стать основой для дифференцированных следовых изменений в отдельных нейронах. Эти же соображения могут быть отнесены и к роли естественных стойких сдвигов поляризации (стойких потенциалов) коры полушарий мозга, обнаруженных в определенной фазе выработки условных рефлексов (В. С. Русинов], Т. Б. Швец, Моррелл, тем более, что указанные сдвиги локализуются в зонах коры, являющихся скорее входными или выходными воротами, чем местом сложной переработки и интеграции сигналов и хранения результатов такой интеграции в памяти. Вопрос о роли изменений в частотной структуре ЭЭГ в процессах памяти возник в связи с обнаруженным М. Н. Ливановым с сотр. во время выработки условной связи между двумя кзоритмическими раздражениями феноменом навязывания ритма в ЭЭГ, заключавшимся в появлении в межсигнальном периоде ЭЭГ-ритмов, соответствующих по частоте применявшимся стимулам. Эти данные были затем подтверждены Либерзоном и Эллен, Стерн с сотр., Джоном с сотр. Феномен условнорефлекторного следования ритму световых мельканий, описанный Морреллом, Иошии с сотр., Джоном с сотр. и другими, также может быть расценен как проявление памяти в ритмах ЭЭГ (учитывая “метку” потенциалов частотой “запомнившихся” раздражений) . Наконец, Майковским было описано явление “генерализации” ритмов после выработки условного рефлекса на ритмические вспышки света, когда первые предъявления в качестве дифференцировочных сигналов вспышек света другой частоты сопровождались моторным ответом с появлением прежней частоты ритмов в моторной зоне, одновременно с наличием новой частоты в сенсорной зоне (сходные явления наблюдались ранее М. Н. Ливановым с сотр. и А. И. Ройтбаком) . Эти данные были подтверждены затем Чоу, Джоном с сотр., причем последние показали появление ритмов прежней частоты в неспецифических структурах мозга (ретикулярная формация среднего мозга, неспецифические таламические ядра) при наличии частоты, соответствующей предъявляемым стимулам, в корковых проекционных зонах. Все приведенные данные свидетельствуют скорее об отражении процессов оперирования с долговременной памятью, чем о носительстве следов кратковременной памяти. Можно думать, вслед за Джоном с сотр., Бреже и др., что в данном случае в частотной структуре ЭЭГ разных отделов мозга отражены, возможно, процессы сравнения, сличения прошлого опыта с наличными воздействиями, с которых говорилось в предыдущей главе в связи с вопросами возникновения ориентировочной реакции и которые необходимы для осуществления любых ответных действий организма (при совпадении этих показателей действие осуществляется автоматически, при рассогласовании требуется организация нового действия, с активным “принятием решения” ) . В этих процессах сравнения прошлый опыт представлен, по авторам, активностью неспецифических структур мозга, а сигналы о текущих событиях — активностью специфических зон новой коры. С подобных процессах сличения сигналов настоящей ситуации со следами памяти говорит, по данным Эйди, сдвиг фаз ритмических колебаний потенциала в гиппокампе и энторинальной коре, наблюдавшийся в условиях, требовавших выработки “планированного поведения” . В связи с вопросом об участии мозговых ритмических электрических процессов в явлениях памяти следует указать на интересные представления с роли спонтанных ритмов ЭЭГ как своеобразных часов мозга, обеспечивающих временное кодирование следов памяти (еще Бергсон отметил, что память всегда датирована) . Применив метод корреляционного анализа ЭЭГ, Бреже показала наличие периодически повторяющегося фазосвязанного компонента альфа-ритма, который мог бы, согласно приведенным представлениям, играть роль механизма отсчета времени в мозге. Фазовые сдвиги между этим компонентом альфа-ритма и частотными составляющими ответа мозга на внешний сигнал, выявленные в указанном исследовании, и выражают, по мнению автора, временное кодирование. Оценивая роль усиления медленных ЭЭГ-ритмов в интервале между условным сигналом и подкреплением на более поздних этапах выработки условного рефлекса, Моррелл высказал предположение, что это усиление отражает процессы записи установившихся связей в долговременную память. Иными словами, и в этом случае ритмы ЭЭГ выступают скорее как инструмент обращения с памятью, чем как носитель ее следов. Представление о длительной циркуляции нервных импульсов в нейронных сетях как о носителе кратковременной памяти основывалось в морфологическом плане на данных Рамон-и-Кахала, а в физиологическом — на анализе спинального разряда последействия, проведенном Форбсом, на известных данных Лоренте де Но о динамике возбуждений в ядре подъязычного нерва, на исследованиях И. С. Беритова относительно протекания рефлекторного разряда в спинном мозге, на данных Дюссе де Баренна и Мак Каллока о роли таламо-кортикальной циркуляции импульсов в генезе ритмов ЭЭГ Чанга — о происхождении поздних компонентов первичного ответа, Бэрнса — о генезе длительных вспышек нейронной активности в изолированной полоске коры после нанесения единичного раздражения и др. Такая циркуляция импульсов по нейронным кругам и связь ее со спонтанной мозговой активностью была продемонстрирована в прямых наблюдениях Верцеано и сотр. с одновременной регистрацией активности нескольких соседних нейронов при помощи множественного микроэлектродного отведения в условиях усиленной синхронизации макропотенциалов в ЭЭГ (сон, судорожная активность) . Детальное обоснование роли такой циркуляции импульсов в процессах памяти дано Хеббом, который считал, что фиксация следа связана со стойкими изменениями синаптической проводимости, возникающими при повторных поступлениях к синапсу импульсного разряда определенной конфигурации. Такое предположение обосновано исследованиями Экклза, показавшего длительные изменения синаптической проводимости при частом функционировании синапса (облегчение) и при значительном периоде его бездействия (затруднение) . Следует, однако, сразу отметить, что эти данные Экклза, привлеченные для трактовки физиологической основы явлений долговременной памяти, оказались для такой роли малопригодными, так как возникновение и сохранение долговременной памяти весьма часто оказывается вне всякой связи с “упражнением” или “неупражнением” синапсов, на что указывал, в частности, Конорский. Однако, независимо от конкретной природы изменений субстрата, фиксирующих долговременный след, имеются основания полагать, что без участия в какой-либо форме процессов повторяющейся импульсации посредством осуществления которой в естественных условиях и является, очевидно, циркуляция импульсов в нейронных сетях, в настоящее время трудно объяснить всю совокупность данных, характеризующих явления кратковременной памяти и ее нарушения, (И. С. Бериташвили, (3) ) . Возражения против роли реверберирующей импульсной активности в осуществлении кратковременной памяти зачастую базировались на отсутствии четкого представления о наличии двух фаз памяти и на подчеркивании, в связи с этим, непригодности или отсутствия признаков такой активности при длительном сохранении следа. Так, Моррелл на основании опытов с изучением “зеркального” энилгнтического фокуса (как модели нейронного научения и запоминания) указывал на сохранение такого фокуса после перерезки мозолистого тела или даже полной изоляции (в условиях изолированной полоски коры) , что, по мнению этого исследователя, говорит против роли повторных импульсации в таком запоминании. Однако данные самого же Моррелла о том, что подобная автономия “зеркального” эпилептического фокуса наблюдается лишь в том случае, если изоляция произошла не ранее чем через 24 часа после возникновения первичного фокуса (на более ранних сроках такая изоляция предотвращает возникновение “зеркального” очага) , говорят в пользу роли повторных импульсации в процессе консолидации следа. Значение периода повторяющейся импульсации для возникновения стойкого следа показано в опытах Чемберлена с сотр. с так называемой “спинальной памятью” , когда изменения позы задней конечности вследствие соответствующего разрушения мозжечка стойко сохранялись и после полной перерезки спинного мозга в грудном отделе, если подобная перерезка производилась не ранее, чем через 45 мин. (та же длительность периода консолидации, что и в опытах Дункана и др.) после возникновения изменения позы. Возражения же Моррелла, связанные с отсутствием признаков циркулирующей импульсации в опытах с анодической поляризацией, о которых говорилось выше, могут быть отведены на том основании, что регистрируемые в зоне поляризации проявления памяти вряд ли являются носителями последней, а отражают, очевидно, лишь реакцию на импульсацию из других структур, в которых непосредственно и разыгрываются процессы, обеспечивающие кратковременную память. Все изложенное свидетельствует, что вопрос о природе нейродинамических сдвигов, являющихся носителем следов кратковременной памяти, не может считаться окончательно разрешенным. Пока нет решающих экспериментальных доказательств в пользу любого из представленных выше физиологических процессов. Следует, тем не менее, отметить, что наиболее подходящим для указанной роли представляется в настоящее время процесс повторяющейся импульсной активности, основанный на циркуляции импульсов в нейронных сетях.