Металлургия титана

Страница 2

Восстановление FeO и TiO до металла можно записать в общем виде уравнением (228),

из которого легко получить:

pCo2/pCo=a[Fe]/a[Ti]*a(TiO)/a(FeO)=exp(dZFeO–dZTiO)/RT

Распределение железа и титана между чугуном и шлаком – функция разности сродства этих металлов к кислороду и зависит от парциального давления окиси углерода в порах шихты, определяемого расходом восстановителя и температурой.

В действительности равновесие не достигается из-за быстрого восстановления железа, накопления чугуна в начале передела и недостатка времени для последующего выравнивания состава фаз.

Плавку ведут периодически или либо непрерывно, в первом случае в шлаках удается оставить всего 5% окиси железа, а во втором 8-15%; непрерывный передел производительнее и полнее автоматизирован.

Для увеличения проплава и снижения расхода энергии шихту предварительно подогревают в трубчатых печах, сжигая мазут или газ. При этом на 1т шлака суммарно затрачивают 1750 кВт*ч.

Производство четыреххлористого титана.

Под термином «хлорирование» подразумевают обычно процесс, в котором хлор в том или ином виде взаимодействует с окислами элементов или другими их соединениями, образуя хлориды или оксихлориды, выделяемые в форме индивидуальных химических веществ или их смесей. Преимущество процесса хлорирования перед другими металлургическими процессами заключается в том, что получаемые при этом хлориды элементов имеют температуру плавления и кипения значительно ниже температур плавления и кипения окислов или других соединений соответствующих элементов. Это важное свойство хлоридов позволяет выделить те или иные полезные компоненты сырья при более низких температурах и с использованием более простых технологических приемов. Резкое различие физических свойств хлоридов – температуры плавления, кипения, сублимации – позволяет разделить отдельные элементы или группы элементов обычной термической разгонкой с последующей фракционной конденсацией. В производстве титана, циркония, ниобия

применение хлорирования окисных соединений этих элементов является основным способом получения этих элементов.

В результате хлорирования происходит либо окисление металла хлором, либо замещение кислорода оксидов хлором. В общем виде схема этого процесса может быть выражена такими уравнениями:

Me + Cl2= MeCl2;

[MexOy] + y(Cl2) = x(MeCl2y/x) + (y/2) (O2).

Следует подчеркнуть одну существенную особенность процесса хлорирования–

огромную скорость химических реакций и высокую степень хлорирования всех компонентов. Это значительной степени облегчает задачу управления процессом и сводит ее фактически к регулированию физических параметров: газодинамики процесса, размеров поверхностей контактируемых фаз, количества подводимого и отводимого тепла. При этом на практике стараются химические факторы стабилизировать за счет постоянства температурного режима и химического состава исходного сырья.

В сложившейся многолетней отечественной и зарубежной промышленной практике температурный режим процесса хлорирования поддерживают в интервале температур 973–1100 К для хлораторов с солевой ванной и 1100–1500 К для шахтных хлораторов. Эти интервалы считаются общепринятыми, и для их поддержания в конструкцию хлораторов вводятся дополнительные энергоподводящие или энергоотводящие элементы или же они корректируются соответствующими технологическими приемами. Вопрос об оптимальной температуре так же как и вопрос об максимальной (адиабатной) температуре процессов хлорирования, имеет важное теоретическое и практическое значение.

Принципиальная схема производства.

Процесс производства четыреххлористого титана состоит из пяти основных переделов: подготовки сырья, хлорирования, конденсации продуктов хлорирования, очистки четыреххлористого титана и переработки отходов.

Подготовка сырья заключается в приготовлении брикетов из титансодержащего материала и кокса, пригодных для хлорирования. Этот передел включает операции дробления, размола, смешения, брикетирования и прокалки брикетов.

Хлорирование осуществляется в различных аппаратах: а) со статическим или неподвижным слоем шихты (шахтные электропечи, шахтные хлораторы); б) с жидкой ванной из расплавленных хлоридов щелочных или щелочноземельных металлов (солевой хлоратор); в) с псевдокипящим слоем шихты.

Для хлорирования титансодержащих материалов (титансодержащие шлаки, искусственный и естественный рутил, некондиционные отходы титановых сплавов) применяют как 100% компрессированный хлор, так и разбавленный воздухом анодный хлоргаз, получаемый в процессе электролиза магния и натрия. В процессе хлорирования оксиды титансодержащих минералов взаимодействуют с хлором и углеродом и переводятся в хлориды. Процесс хлорирования проводят при 900–1500 К. Назначение конденсации – отделить четыреххлористый титан от хлоридов, примесных элементов и получить технический четыреххлористый титан.

Очистка технического четыреххлористого титана. Здесь происходит уже окончательная очистка четыреххлористого титана от растворенных в нем примесей.

Переработка отходов. Чем богаче материал по содержанию в нем титана, тем проще его перерабатывать путем хлорирования. Однако с повышением чистоты исходного сырья стоимость его возрастает. Поэтому для промышленного производства четыреххлористого титана применение титансодержащих материалов высокой чистоты (например титана) экономически не всегда выгодно.

Подготовка сырья.

Титановые шлаки, получающиеся в результате руднотермической восстановительной плавки железо-титановых концентратов, дробят в щековой и конусной дробилках. После измельчения шлаки размалывают в шаровых мельницах. Размолотый шлак должен содержать фракций +0.1 мм не более 10% (по массе) и металлического железа менее 4%. После удаления с помощью магнитной сепарации металлического железа размолотый шлак поступает на хлорирование (при использовании солевых хлораторов или аппаратов кипящего слоя) или в отделение подготовки шихты (брикетирование, агломерация, окомкование) при использовании шахтных хлораторов с подвижным слоем.

Аппараты для хлорирования. Хлорирование в шахтных электропечах

и шахтных хлораторах с подвижным слоем.

Шахтная электропечь. На первом этапе развития титановой промышленности в качестве основного промышленного аппарата использовались шахтные электропечи (ШЭП) для производства магния. В титановом производстве их конструкция подвергалась значительным изменениям. Шахтная электоропечь состоит из двух зон – верхней и нижней. В верхнюю зону через свод печи загружают шихту; в нижнюю зону,

оборудованную электродами, загружают угольную насадку и подают хлор. Шахтные электропечи незаменимы при использовании титаносодержащего сырья с компонентами, хлориды которых низколетучи (например, перовскиты, титаномагнетиты и др.). Шахтная электропечь сыграла важную роль создании и развитии отечественной титановой промышленности.

Хлоратор с подвижным слоем. В связи с появлением титаносодержащих шлаков с низким содержанием в них CaO и MgO шахтные электропечи вытеснены более совершенным аппаратом – хлоратором с подвижным слоем. Основное отличие его от ШЭП – отсутствие электрообогрева, сложной насадочной зоны и наличие в нижней его части герметичного разгрузочного устройства для непрерывного удаления непрохлорированного остатка.

Последнее обстоятельство позволяет коренным образом улучшить газодинамические параметры и резко интенсифицировать процесс, так как температурный режим в хлораторе и аппаратах конденсационной системы легко регулируется количеством подаваемого хлора, загрузкой брикетов и выгрузкой непрохлорированного остатка. Это в значительной степени упрощает процесс и облегчает его автоматизацию.

Уровень шихты в хлораторе поддерживают в интервале 1.2-3.5 м. Для хлорирования применяют брикеты или гранулы. Многочисленные способы приготовления гранулированной шихты можно разделить на два принципиально отличающихся метода: 1) углеродистый восстановитель и связующее дозируются с двух-трехкратным избытком, вследствие чего после прокалки образуются брикеты или гранулы с углеродистым каркасом; 2) компоненты шихты дозируются в строго стехиометрическом соотношенни и подготавливаются таким образом, что в процессе хлорирования они полностью сгорали.