Развитие атомной энергетики

Страница 2

3. Атомы вечны и неизменны, а все сложные тела, из них состоящие, изменчивы и преходящи.

4. Не существует ничего, кроме атомов и «чистого» пространства.

5. Атомы вечно движутся. Движение всегда присуще атомам и происходит в силу господства во Вселенной закона универсальной необходимости.

6. Атомы бесконечны по числу и бесконечно разнообразны по форме.

7. Во Вселенной существует бесконечное множество миров. Наш мир один из них.

8. Различие между вещами связано с различием их атомов по числу, величине, форме .

Естественно-научное мировоззрение древних получило свое развитие в трудах знаменитого философа того времени Аристотеля (384-322 до н. э.). В своем творчестве он охватил почти все существовавшие тогда отрасли знаний. Хотя Аристотель критиковал своего учителя философа-идеалиста Платона (427-347 до н. э.), он не был материалистом. Он признавал объективное существование материального мира и его познаваемость, но противопоставлял земной и небесный миры, верил и учил верить в существование божественных сил.

Аристотель считал, что все космические тела состоят из эфира, основного элемента природы, в котором изначально заложено совершенное движение по кругу.

Естественный путь познания природы, учил Аристотель, идет от менее известного и явного для нас к более явному и известному с точки зрения природы вещей. Он рассматривал такие общие понятия, как материя и движение, пространство и время, конечное и бесконечное.

В своей работе «Физика» Аристотель подробно разобрал взгляды своих предшественников – Анаксагора, Левкиппа, Демокрита и др. Он резко критиковал воззрения атомистов, признающих существование бесчисленного множества атомов и миров. По Аристотелю реальный мир конечен, ограничен и построен из «конечного числа» элементов. Понятие пустоты по Аристотелю противоречит действительности. Бесконечное разреженное пустое пространство ведет к бесконечному движению, а это, по мнению Аристотеля, невозможно.

«Канонизированное» учение Аристотеля в средние века надолго задержало развитие атомистических воззрений. И все же учение об атомах, атомистика, пройдя через многие века, выдержало ожесточенную борьбу и дошло до наших дней с более глубокими представлениями об атоме, полученными в результате огромного числа физико-химических экспериментов и исследований по физике атома.

В Древнем Риме поэт и философ Тит Лукреций Кар (99-55 до н. э.) в своей знаменитой поэме «О природе вещей» изложил атомистическое учение греческого философа Эпикура.

Представитель афинской школы Эпикур (341-270 до н. э.), а за ним Лукреций пытались существованием атомов объяснить все естественные и социальные явления. Лукреций рисует модель движения атомов, уподобляя его движению пылинок в солнечном луче в темной комнате. Это по существу одно из первых в истории естественных наук описание молекулярного движения. Созданная древними философами теория атомов совпадает с современными концепциями только в самых общих чертах.

Гениальные догадки философов-материалистов, атомистов Древней Греции и Рима предопределили рождение современной атомистической теории – физики атома, ядерной физики. Мы и сегодня поражаемся изумительным научным догадкам и идеям древних философов, основанным только на чисто умозрительных предположениях почти без всяких экспериментальных подтверждений. Это лишний раз доказывает, что возможностям человеческого разума нет пределов. Экскурсом в древность мы хотели подчеркнуть, что толчком к поискам энергии атомного ядра явился вывод древнегреческих и других древних философов о том, что материя состоит из бесконечного числа мельчайших неделимых частиц – атомов. Наука XIX и XX вв., непрерывно обогащаясь новыми знаниями и идеями, подтверждаемыми научными экспериментами и теориями, продвигалась вперед к познанию атома. Движение к высвобождению внутриядерной энергии сопровождалось длительным, многовековым накоплением знаний во многих отраслях науки.

Атомистика в период до XVII в.

В период средневековья атомистика переживала тяжелые времена. В средние века господствовали схоластика, теология и открытия в науке были спорадическими. И в те времена люди немало сделали, продвигаясь к вершинам познания, но все же такого расцвета, как в Древней Греции и Риме, в странах Западной Европы не наблюдалось.

Средневековый Восток имел более широкие, чем Западная Европа, связи со многими близкими и далекими странами, что способствовало развитию геометрии, алгебры, тригонометрии, медицины и других наук. Так, труды Аристотеля, Птолемея и других пришли в Европу в переводах с арабского. Арабы были как бы связующим звеном между античной и средневековой культурой и наукой.

В 1121 г. в Средней Азии появился курс физики Аль-Хазини, в котором были таблицы удельных весов ряда твердых и жидких тел. Много сделал хорезмский ученый Бируни (973-1048) в опытах по определению удельной массы веществ. В Бухаре жил знаменитый ученый философ Абу Али Ибн Сина (Авиценна). В своих работах он, последователь учения Аристотеля и позднее неоплатонизма, проповедовал вечность материи.

В середине XV в. в экономическом, политическом и культурном развитии Европы начинают отчетливо проступать новые, самобытные черты.

Николай Коперник (1473-1543) сломал общепризнанную до того концепцию мироздания, по которой Земля считалась неподвижной по отношению к Солнцу. Коперник отбросил геоцентрическую систему Птолемея и создал гелиоцентрическую систему мироздания. Возникнув в астрономии, она распространилась и на физику, дав новый импульс развитию атомистических идей. Атомы неощутимы, считал Коперник, несколько атомов не составляют видимого тела. И все же число этих частиц можно так умножить, что их будет достаточно для слияния в заметное тело. Коперник вплотную подошел к материалистической атомистике. В эпоху Возрождения физические наблюдения и опыты еще не носили систематического характера, хотя и были достаточно широко развиты.

Началу использования в физике экспериментального метода положил Галилео Галилей (1564-1642), итальянский физик, механик, астроном, один из основателей естествознания. Его влияние на развитие механики, оптики, астрономии неоценимо. Основа мировоззрения Галилея – признание объективного существования мира, т. е. существования вне и независимо от человеческого сознания. Галилей считал, что мир бесконечен, материя вечна. Материя состоит из абсолютно неделимых атомов, ее движение – единственное, универсальное механическое перемещение. Галилей экспериментально подтвердил ряд гипотез древних философов об атомах. В своих трудах он поддержал гелиоцентрическую систему мироздания, за что жестоко пострадал от католической инквизиции.

Научная деятельность Галилея, его огромной важности открытия, научная смелость имели решающее значение для утверждения гелиоцентрической системы мира.

Научные открытия и наследие великого английского ученого Исаака Ньютона (1643-1727) относятся к трем основным областям: математике, механике и астрономии. Ньютон вошел в историю как подлинный корифей науки, его основные труды и сейчас не утратили своего значения, хотя время и вносит коррективы в некоторые их разделы. Первый ощутимый удар по учению Ньютона нанесла теория электромагнитного поля Дж. Максвелла (1831-1879), основателя классической электродинамики и статистической физики. Утверждение современной физики было подготовлено открытием рентгеновских лучей, радиоактивности элементов и их взаимных превращений, теорией относительности Эйнштейна, квантовой теорией и др. И все же это ни в коей мере не умаляет огромного значения для науки классических работ И. Ньютона.

Физика в XVIII и XIX вв.

В XVIII и XIX вв. классическая физика вступила в период, когда многие ее положения стали подвергаться серьезному переосмыслению. В 1746 г. М. В. Ломоносов (1711-1765) писал: «Мы живем в такое время, в которое науки после своего возобновления в Европе возрастают и к совершенству приходят».

Михаил Ломоносов – первый русский профессор химии, автор первого русского курса физической химии. В области физики он оставил нам ряд важных работ по кинетической теории газов, теории теплоты, оптике и др. Рассматривая основу химических явлений» Ломоносов на базе атомно-молекулярных представлений развивал учение о «нечувствительных» (т. е. неощутимых) частицах материи – «корпускулах» (молекулах). Он полагал, что всем свойствам вещества можно дать исчерпывающее объяснение с помощью представления о различных чисто механических движениях корпускул, состоящих из атомов. Он утверждал, что химическая теория должна строиться на законах механики и математики.