Название реферата: Конструирование ДЛА РДТТ
Раздел: Астрономия, Авиация, Космонавтика
Скачано с сайта: www.yurii.ru
Размещено: 2012-12-25 13:46:39
Конструирование ДЛА РДТТ
Ракетные двигатели твердого топлива (РДТТ) получили в настоящее время широкое применение. Из опубликованных данных следует, что более 90 % существующих и вновь разрабатываемых ракет оснащаются РДТТ. Этому способствуют такие основные достоинства их, как высокая надежность, простота эксплуатации, постоянная готовность к действию. Наряду с перечисленными достоинствами РДТТ обладают рядом существенных недостатков: зависимостью скорости горения ТРТ от начальной температуры топливного заряда; относительно низким значением удельного импульса ТРТ; трудностью регулирования тяги в широком диапазоне.
РДТТ применяются во всех классах современных ракет военного назначения. Кроме того, ракеты с РДТТ используются в народно- хозяйственных целях, например, для борьбы с градом, бурения скважин, зондирования высоких слоев атмосферы и.д.
Разнообразие областей применения и выполняемых задач способствовало разработке большого числа различных конструкций, отличающихся габаритными, массовыми, тяговыми, временными и другими характеристиками. Некоторые представления о широте применения могут дать характеристики тяги РДТТ, находящиеся в крайних областях этого диапазона. Для РДТТ малых тяг значение тяги находится в пределах от 0,01 Н до 1600 Н. Тяги наиболее крупных двигателей достигают десятков меганьютонов. Например, для РДТТ диаметром 6,6 м тяга составляет 31 МН.
В данной работе рассмотрен вопрос проектирования в учебных ( с использованием ряда учебных пособий) РДТТ верхней ступени ракеты носителя, на смесевом топливе, полагающий знакомство с основами расчета и проектирования твердотопливных двигателей, методиками определения основных параметров двигателя, расчетом прочности, примерами проектирования топливных зарядов.
3. Выбор оптимальных параметров и топлива.
Тяга двигателя в пустоте |
P(Н)= |
30000 | |
Время работы двигателя |
t(с)= |
25 | |
Давление на срезе сопла |
P a(Па)= |
10270 | |
Топливо ARCADENЕ 253A | |||
Начальная скорость горения |
u1(мм/с)= |
1,554 | |
Показатель степени в законе горения |
n |
0,26 | |
Коэффициент температурного влияния на скорость горения |
a t= |
0,00156 | |
Начальная температура топлива |
tн(°С)= |
20 | |
Начальная температура топлива |
Tн(К)= |
293,15 | |
Плотность топлива |
r(кг/м^3)= |
1800 | |
Давление в камере сгорания |
P k(Па)= |
6150000 | |
Скорость горения при заданном давлении |
u(мм/с)= |
4,558 | |
Температура продуктов сгорания |
T(К)= |
3359,6 | |
Молекулярный вес продуктов сгорания |
m(кг/кмоль)= |
19,531 | |
Средний показатель изоэнтропы на срезе сопла |
n= |
1,152 | |
Расчётный удельный импульс |
Iу(м/с)= |
2934,8 | |
Расходный комплекс |
b(м/с)= |
1551,5 | |
Идеальный пустотный удельный импульс |
Iуп(м/с)= |
3077,3 | |
Удельная площадь среза сопла Fуд |
(м^2с/кг)= |
30,5 | |
Относительная площадь среза сопла |
Fотн= |
54,996 | |
Коэффициент камеры |
jк= |
0,980 | |
Коэффициент сопла |
jс= |
0,960 | |
Коэффициент удельного импульса |
jI= |
0,941 | |
Коэффициент расхода |
mс= |
0,990 | |
Коэффициент расходного комплекса |
jb= |
0,990 | |
Действительный расходный комплекс |
b(м/с)= |
1535,828 | |
Действительный удельный пустотный импульс |
Iуп(м/с)= |
2895,124 | |
Действительный расход газа |
m(кг/с)= |
10,362 | |
Площадь минимального сечения |
Fм(м^2)= |
0,003 | |
Средняя поверхность горения |
W(м^2)= |
1,263 | |
Высота свода |
e0(мм)= |
113,947 | |
e0(м)= |
0,114 | ||
Отношение площадей |
k=Fсв/Fм= |
3,000 | |
Площадь свободного сечения канала |
Fсв(м^2)= |
0,008 | |
Требуемая масса топлива |
mт(кг)= |
259,056 | |
Количество лучей звезды |
i= |
6 | |
Угол |
q(°)= |
67,000 | |
e=0,7…0,8 |
0,750 | ||
Полуугол |
q/2(р рад)= |
0,585 | |
Угол элемента звезды |
a(рад)= |
0,393 | |
A= 0,817 H= 0,084 Диаметр камеры D= 0,396 Площадь камеры сгорания Fк= 0,123 Радиус камеры R(м)= 0,198 Отношение высоты свода к диаметру камеры e0/D= 0,288 Относительная величина вылета крышки m= 0,500 Величина вылета крышки b(м)= 0,099 Приближённый обьём элиптического днища V(м^3)= 0,008 Обьём занимаемый двумя днищами V(м^3)= 0,016 Относительный радиус скругления свода r/D= 0,015 Радиус скругления свода r(м)= 0,006 Радиус скругления луча r1(м)= 0,005 Вспомогательная площадь F1(м^2)= 0,003 Вспомогательная площадь F2(м^2)= 0,006 Вспомогательная площадь F3(м^2)= 0,003 Площадь остаточного топлива Fост(м^2)= 0,004 Длина обечайки камеры сгорания L(м)= 1,229 Длина заряда вначале горения L1(м)= 1,328 Длина камеры сгорания вместе скрышками L(м)= 1,427 Относительная длина камеры Lот=L/D= 3,605 Материал обечайки двигателя Композит материал (стеклопласт ППН) Плотность материала обечайки двигателя r(кг/м^3)= 2070,000 Прочность материала обечайки двигателя
σв (Мпа)= 950 Материал днищ двигателя Титановый сплав ВТ14 Плотность материала днищь двигателя r(кг/м^3)= 4510,000 Прочность материала днищь двигателя
σв(Мпа)= 1000 Коэффициент запаса прочности n= 1,400 Толщина днища δ дн= 0,002 Толщина обечайки δ об= 0,002 Масса обечайки двигателя топливо заполняет одно днище
mоб= 5,679 Масса днища двигателя
mдн= 2,572 Суммарная масса топлива, днищь и обечайки топливо заполняет одно днище
mдв= 269,881
Приближенный расчет выхода двигателя на стационарный режим
Геометрические характеристики заряда и камеры | ||
Диаметр заряда |
D, м= |
0,387 |
Длина заряда |
l, м= |
1,365 |
Длина камеры сгорания |
L, м= |
1,462 |
Диаметр критического сечения |
d, м= |
0,057 |
Площадь критического сечения |
Fкр, м2= |
0,003 |
Площадь проходного сечения |
F= |
0,005 |
Давление выхода на режим | ||
Давление вскрытия сопловой диафрагмы |
Характеристики топлива и условия его горения | |||
Даление в камере сгорания |
р, Мпа= |
6,15 | |
Давление воспламенения |
рВ, Па= |
1845000 | |
Начальная скорость горения |
u, м/с= |
0,001554 | |
Плотность топлива |
r, кг/м3= |
1800 | |
Температура продуктов сгорания |
Т, К= |
3359,6 | |
Молекулярный вес продуктов сгорания |
m, кг/кмоль= |
19,531 | |
Показатель изоэнторпы |
K= |
1,164 | |
Коэффициент тепловых потерь |
c= |
0,95 | |
Коэффициент расхода |
j2= |
0,95 | |
Показатель скорости горения |
n= |
0,26 | |
Предварительные вычисления | ||||
Объем одной крышки |
Vт, м3= |
0,007600335 | ||
Площадь поверхности горения |
Sт, м2= |
1,26 | ||
Свободный объем камеры сгорания |
Vсв, м3= |
0,014663394 | ||
Газодинамическая функция |
A(k) = |
0,641445925 | ||
Параметр заряжания |
N= |
7,61987E-06 | ||
Расчет установившегося давления | |||||
Величина давления при N1=N |
pуст, Па= |
8246824,202 | |||
Величина e' в первом приближении |
0,00337207 | ||||
Значение N1 в первом приближении |
7,64566E-06 | ||||
Величина установившегося давления | |||||
во втором приближении |
руст, МПа= |
8,209266925 | |||
Относительное отклонение давлений | |||||
на приближениях |
Dр= |
0,00455415 | |||
Принимаем величину установившегося давления руст, Мпа |
8,209266925 | ||||
Расчет давления в период выхода двигателя на режим | |||
Величина |
а, с-1= |
92,7601292 | |
Время выхода на режим |
t,с= |
0,0397 | |
Интервалы времени Dt, сек |
0,00397 | ||
Время t, сек |
Относительное давление |
Действительное давление |
|
| |
0,004 |
0,4936 |
4,052 |
0,008 |
0,6406 |
5,259 |
0,012 |
0,7475 |
6,136 |
0,016 |
0,8237 |
6,762 |
0,02 |
0,8774 |
7,203 |
0,024 |
0,915 |
7,511 |
0,028 |
0,9411 |
7,726 |
0,032 |
0,9593 |
7,875 |
0,036 |
0,9718 |
7,978 |
0,04 |
0,9806 |
8,05 |
4.Изменение поверхности горения по времени.
Высота свода заряда: е0 = 0,114м.;
Длина заряда: L = 1,328м.;
Длина луча заряда: Н = 0,070м.;
Радиус камеры сгорания: R = 0,198м.;
Величина вылета крышки: b = 0,092м.;
Радиус скругления свода: r = 0,005м.;
Радиус скругления луча: r1 = 0,8ּr = 0,0044.;
Полуугол раскрытия лучей: β = Θ/2 = 33,53˚ = 0,585 рад.;
Угол эл-та звезды:
˚ = 0,44779 рад.;
Длина луча без радиуса скругления: x = H – r = 0,179-0,006 = 0,0781 м;
Скорость горения топлива: u = 4,558 мм/с = 0,00456м/с.;
Определим периметр и площадь горения в начале и в конце каждой фазы. Начало новой фазы соответствует параметрам конца предыдущей фазы. Полученные данные представлены в таблице.
SI.нач = ПI.начּL ;
SI.кон = ПI.конּL
Периметр и поверхность горения в начале и в конце II фазы:
ПII.нач = ПI.кон = 0,7733 м.;
SII.нач = SI.кон = 1,0273 м.2;
SII.кон = ПII.конּL
Периметр и поверхность горения в начале и в конце III фазы горения (конец III фазы горения в момент времени τ = 25с.).
ПIII.нач = ПII.кон = 0,8085м.;
SIII.нач = SII.кон = 1,0739 м.2;
SIII.кон = ПIII.конּ(L-b)
Фаза |
I |
II |
III |
Периметр горения |
0,77335835 |
0,80849185 |
1,2358041 |
Площадь горения |
1,02726667 |
1,07393517 |
1,5192155 |
5.Профилирование сопла.
- геометрическая степень расширения сопла;
Fм = 0,00259 м2;
Диаметр минимального сечения:
Площадь среза сопла:
Диаметр среза сопла:
Радиусы скругления:
R1 = 1,5ּRм = 1,5ּ0,006/2 = 0,0917м.;
R2 = 0,5ּ Rм = 0,5ּ0,006/2 = 0,0306м.;
Угол касательной к контуру сопла на выходе βа = 0,106 рад. = 6,073˚;
Относительная длина сопла:
;
Угол на входе в сверхзвуковую часть сопла: βb = 0, 6 рад. = 34,38˚;
Длина сопла:
6.Расчет ТЗП.
Определение коэффициентов теплопроводности.
Камера сгорания.
Давление в камере сгорания:
р = 6,15 Мпа;
Температура продуктов сгорания:
Т = 3359,6 К;
Средний молекулярный вес продуктов сгорания:
μ = 19,531 кг/кмоль;
Теплоемкость продуктов сгорания:
Ср = 3345 ;
Коэффициент динамической вязкости:
η = 0,9330 ;
Коэффициент теплопроводности:
λ = 0,9812;
Массовый расход продуктов сгорания:
кг/сек;
Смоченный периметр заряда:
П = 0,7734 м.;
Начальная площадь проходного сечения:
Fсв = 0,00776 м2;
Эквивалентный гидравлический диаметр:
Приведенный диаметр проходного сечения (для расчета лучистого теплового потока):
Средняя длина луча:
l = 0,9ּdсв. = 0,9ּ0,283 = 0,0895м.;
Средняя плотность продуктов сгорания:
Принимаем температуру поверхности Тст = 2100К;
Переднее Днище.
Коэффициент конвективной теплоотдачи (свободная конвекция):
, где γ – ускорение = 9,81 м/с.; тогда
Определяем коэффициент лучистой теплоотдачи:
Коэффициент Стефана-Больцмана: C0 = 5,67
Массовая доля конденсата:
Z = 0,317;
Принимаем оптический диметр частиц:
d32 = 3 мкм.;
Степень черноты изотермического потока продуктов сгорания:
εр = 0,229 +0,061ּd32 + 0,00011ּТ – 0,3684ּZ+0.00502ּp-0,00338ּl =
= 0,229 +0,061ּ3 + 0,00011ּ3411 – 0,3684ּ0,317+0.00502ּ10-0,00338ּ0,2547 = 0,6965;
Принимаем степень черноты материала:
εст. = 0,8;
Эффективная степень черноты:
εэф.ст. = (1+ εст.)/2 = (1+0,8)/2 = 0,9;
Лучистый тепловой поток:
Коэффициент лучистой теплоотдачи:
Суммарный коэффициент теплоотдачи:
α = αл + αк = 3046,02+687,41 = 3733,425
Заднее днище.
Коэффициент конвективной теплоотдачи (вынужденной):
Nu = 0,023ּRe0,8ּPr0,4;
Определяем скорость продуктов сгорания у заднего днища:
Критерий Рейнольдса:
Критерий Прандтля:
;
Критерий Нюсельта:
Nu = 0,023ּ1826929,5280,8ּ0,30880,4 = 774,04;
Коэффициент конвективной теплоотдачи:
Коэффициент лучистой теплоотдачи:
αл = 3046,02
α = αл + αк = 18914,7+3046,02 = 21960
Критическое сечение.
Давление продуктов сгорания в критическом сечении:
Ркр = 3534720 Па;
Температура в основном потоке газа:
Т = 3162,3 К;
Температура торможения:
Т0 = 3359,6 К;
Средний молекулярный вес продуктов сгорания:
μ = 19,410 кг/кмоль;
Теплоемкость ПС:
Ср = 1898 ;
Коэффициент динамической вязкости:
η = 0,0000879
η0 = 0,0000915
Коэффициент теплопроводности:
λ = 0,8914 ;
Массовый расход ПС:
кг/сек;
Площадь критического сечения:
Fм = 0,0026 м2;
Диаметр минимального сечения: dм = 0,057м.;
Температура поверхности: Тст. = 2300 К;
Критерий Прандтля:
;
Определяющая температура:
Тf = 0,5ּ(Т+Тст)+0,22ּPr1/3(T0-T) = 0,5ּ(3195+2300) +0,22ּ0,3111/3(3411-3195)=2756,1 К;
Коэффициент динамической вязкости при Тf :
ηf = 0,0000798
Плотность газа при Тf :
Плотность газа при Т0 :
Поправка:
;
Радиус кривизны:
r = dм/2 = 0,057/2 = 0,0287 м.;
Коэффициент конвективной теплоотдачи:
Коэффициент лучистой теплоотдачи:
qл – лучистый тепловой поток в камере сгорания.
Суммарный коэффициент теплоотдачи:
α = αл + αк = 2224,73+56687,34 = 58912,068
Срез сопла.
Давление продуктов сгорания в критическом сечении:
Ркр = 10270 Па;
Температура в основном потоке газа:
Т = 1480 К;
Температура торможения:
Т0 = 3660 К;
Средний молекулярный вес продуктов сгорания:
μ = 19,42 кг/кмоль;
Теплоемкость ПС:
Ср = 1650,1 ;
Коэффициент динамической вязкости:
η = 0,00006452
η0 = 0,00008
Коэффициент теплопроводности:
λ = 0,1745 ;
Массовый расход ПС:
кг/сек;
Площадь среза сопла:
Fа = 0,14233 м2;
Диаметр на срезе сопла: dа = 0,458м.;
Температура поверхности: Тст. = 1600 К;
Критерий Прандтля:
;
Определяющая температура:
Тf = 0,5ּ(Т+Тст)+0,22ּPr1/3(T0-T) = 0,5ּ(1480,3+1600) +0,22ּ0,44971/3(3360-1480)=1990 К;
Коэффициент динамической вязкости при Тf :
ηf = 0,00006036
Плотность газа при Тf :
Плотность газа при Т0 :
Поправка:
;
Радиус кривизны:
r = dа/2 = 0,5188/2 = 0,2594 м.;
Коэффициент конвективной теплоотдачи:
Коэффициент лучистой теплоотдачи:
Суммарный коэффициент теплоотдачи:
α = αл + αк = 25,678+143,641 = 169,32
Расчет ТЗП.
1.Переднее днище.
Время работы двигателя 25 секунд.
Материал стенки: ВТ-14;
Плотность: ρМ = 4510 кг/м3;
Прочность материала днища: σ = 1000 МПа;
Теплоемкость титанового сплава: СрМ = 586
Теплопроводность: λМ = 16,9
Коэффициент теплопроводности: аМ = 0,00000642 м2/сек;
Толщина днища: δдн = 0,00445 м.;
Допустимая температура стенки: Тg = 900 К;
Начальная температура материала: Т = 293,15 К;
Материал теплозащитного покрытия: ZiO2;
Плотность: ρп = 4400 кг/м3;
Теплоемкость покрытия: СрП = 733
Теплопроводность: λП = 0,72
Коэффициент теплопроводности:
Коэффициент теплоотдачи: α = 4168,836
Определяем толщину ТЗП для ряда температур стенки (титанового сплава):
Диапазон экслуатационных температур разделим на равные промежутки и проведем расчет по следующим формулам для каждого из них. Данные представлены в таблице:
Температурный симплекс:
;
Коэффициенты аппроксимации, при μ = 0,2…20;
;
Допустимы ряд темпер-тур Т (К) |
600 |
650 |
700 |
750 |
800 |
850 |
q= |
0,8999 |
0,8836 |
0,8673 |
0,8510 |
0,8347 |
0,8184 |
lgq0= |
0,0122 | |||||
С= |
0,4000 | |||||
А= |
0,4500 | |||||
lgq-lgq0= |
-0,0580 |
-0,0659 |
-0,0740 |
-0,0823 |
-0,0907 |
-0,0992 |
1/М= |
0,0036 |
0,0036 |
0,0036 |
0,0036 |
0,0036 |
0,0036 |
δп(м)= |
0,0067 |
0,0061 |
0,0056 |
0,0051 |
0,0048 |
0,0045 |
2.Заднее днище.
Время работы двигателя 25 секунд.
Материал стенки: ВТ-14;
Плотность: ρМ = 4510 кг/м3;
Прочность материала днища: σ = 1000 МПа;
Теплоемкость титанового сплава: СрМ = 586
Теплопроводность: λМ = 16,9
Коэффициент теплопроводности: аМ = 0,00000642 м2/сек;
Толщина днища: δдн = 0,00445 м.;
Допустимая температура стенки: Тg = 900 К;
Начальная температура материала: Т = 293,15 К;
Материал теплозащитного покрытия: ZiO2;
Плотность: ρп = 4400 кг/м3;
Теплоемкость покрытия: СрП = 733
Теплопроводность: λП = 0,72
Коэффициент теплопроводности:
Коэффициент теплоотдачи: α = 4168,836
Определяем толщину ТЗП для ряда температур стенки (титанового сплава):
Диапазон экслуатационных температур разделим на равные промежутки и проведем расчет по следующим формулам для каждого из них. Данные представлены в таблице:
Температурный симплекс:
;
Коэффициенты аппроксимации, при μ = 0,2…20;
;
Допустимы ряд темпер-тур Т (К) |
600 |
650 |
700 |
750 |
800 |
850 |
q= |
0,8999 |
0,8836 |
0,8673 |
0,8510 |
0,8347 |
0,8184 |
lgq0= |
0,0122 | |||||
С= |
0,4000 | |||||
А= |
0,4500 | |||||
lgq-lgq0= |
-0,0580 |
-0,0659 |
-0,0740 |
-0,0823 |
-0,0907 |
-0,0992 |
1/М= |
0,0036 |
0,0036 |
0,0036 |
0,0036 |
0,0036 |
0,0036 |
δп(м)= |
0,0068 |
0,0062 |
0,0057 |
0,0053 |
0,0050 |
0,0046 |
3.Критическое сечение.
Время работы двигателя 18 секунд.
Материал стенки: ВТ-14;
Плотность: ρМ = 4510 кг/м3;
Прочность материала днища: σ = 1000 МПа;
Теплоемкость титанового сплава: СрМ = 586
Теплопроводность: λМ = 16,9
Коэффициент теплопроводности: аМ = 0,00000642 м2/сек;
Толщина днища: δдн = 0,004 м.;
Допустимая температура стенки: Тg = 800 К;
Начальная температура материала: Т = 293,15 К;
Материал теплозащитного покрытия: Углерод (пирографит);
Плотность: ρп = 2200 кг/м3;
Теплоемкость покрытия: СрП = 971
Теплопроводность: λП = 5
Коэффициент теплопроводности:
Коэффициент теплоотдачи: α = 77954,46
Определяем толщину ТЗП для ряда температур стенки (титанового сплава):
Диапазон экслуатационных температур разделим на равные промежутки и проведем расчет по следующим формулам для каждого из них. Данные представлены в таблице:
Температурный симплекс:
;
Коэффициенты аппроксимации, при μ = 0,2…20;
;
Допустимы ряд темпер-тур Т (К) |
600 |
650 |
700 |
750 |
800 |
850 |
q= |
0,8931 |
0,8756 |
0,8582 |
0,8408 |
0,8233 |
0,8059 |
lgq0= |
0,0122 | |||||
С= |
0,4000 | |||||
А= |
0,4500 | |||||
lgq-lgq0= |
-0,0613 |
-0,0699 |
-0,0786 |
-0,0875 |
-0,0966 |
-0,1059 |
1/М= |
0,0049 |
0,0049 |
0,0049 |
0,0049 |
0,0049 |
0,0049 |
δп(м)= |
0,0271 |
0,0250 |
0,0233 |
0,0218 |
0,0205 |
0,0194 |
4.Срез сопла.
Время работы двигателя 18 секунд.
Материал стенки: ВТ-14;
Плотность: ρМ = 4510 кг/м3;
Прочность материала днища: σ = 1000 МПа;
Теплоемкость титанового сплава: СрМ = 586
Теплопроводность: λМ = 16,9
Коэффициент теплопроводности: аМ = 0,00000642 м2/сек;
Толщина днища: δдн = 0,004 м.;
Допустимая температура стенки: Тg = 900 К;
Начальная температура материала: Т = 293,15 К;
Материал теплозащитного покрытия: SiC;
Плотность: ρп = 1700 кг/м3;
Теплоемкость покрытия: СрП = 1250
Теплопроводность: λП = 4,19
Коэффициент теплопроводности:
Коэффициент теплоотдачи: α = 1227,904
Определяем толщину ТЗП для ряда температур стенки (титанового сплава):
Диапазон экслуатационных температур разделим на равные промежутки и проведем расчет по следующим формулам для каждого из них. Данные представлены в таблице:
Температурный симплекс:
;
Коэффициенты аппроксимации, при μ = 0,2…20;
;
Допустимы ряд темпер-тур Т (К) |
600 |
650 |
700 |
750 |
800 |
850 |
q= |
0,7415 |
0,6994 |
0,6573 |
0,6152 |
0,5731 |
0,5309 |
lgq0= |
0,0122 | |||||
С= |
0,4000 | |||||
А= |
0,4500 | |||||
lgq-lgq0= |
-0,1421 |
-0,1675 |
-0,1944 |
-0,2232 |
-0,2540 |
-0,2872 |
1/М= |
0,0037 |
0,0037 |
0,0037 |
0,0037 |
0,0037 |
0,0037 |
δп(м)= |
0,0022 |
0,0014 |
0,0008 |
0,0002 |
0,0002 |
0,0005 |
8.Расчет на прочность камеры сгорания.
Свойство материала корпуса (обечайки):
Стеклопластик:
σв = 950 МПа;
Е = 39,2ּ103 МПа;
Днища:
Титановый сплав:
σв = 1000 МПа;
Толщина обечайки:
δоб = 0,002 м.;
Длина: Lоб. = 1,229 м.;
Диаметр камеры сгорания:
Dк = 0,5443 м.; Rк = 0,200 м.;
Толщина эллиптического днища:
δдн. = 0,002 м.;
Относительная величина вылета крышки:
m= 0,5;
Величина вылета крышки:
b = 0,099 м.;
Напряжения от внутренних сил:
Для обечайки:
Суммарное напряжение:
Коэффициент запаса прочности:
Для эллиптического днища:
Суммарное напряжение:
0
Категория: Авиация и космонавтика