Разработка мобильной измерительной системы для оценки вибрационного состояния роторных машин

Разработка мобильной измерительной системы для оценки вибрационного состояния роторных машин

1  Технология


1.1       Вибродиагностика

Контроль технического состояния энергомеханического оборудования может проводиться на остановленном, вскрытом и работающем агрегатах. На остановленном и особенно на вскрытом агрегате имеются значительно большие возможности для оценки технического состояния и определения конкретного вида неисправности.  Однако,  недостатком этих способов контроля, ограничивающих их широкое применение, является необходимость остановки агрегата, что далеко не всегда возможно в условиях эксплуатации. В связи с этим особое место занимают методы диагностики на работающем оборудование. Наиболее широкое применение нашли методы акустической, вибрационной, магнитной памяти металла, параметрической диагностики и диагностика по анализу отработанного масла (трибодиагностика).

Метод вибрационной диагностики использует в качестве диагностической информации вибрацию работающего агрегата. Вибрационный сигнал является носителем информации о различных колебаниях узлов и деталей энергомеханического оборудования. Всякое изменение характера взаимодействия его элементов приводит к отклонении параметров функционирования агрегата и, как следствие, к изменению сопровождающих его вибрационных сигналов. Этот вид диагностики отличается от других методов технической диагностики рядом характерных особенностей и, прежде всего, многообразием физической природы вибрационных сигналов и высокой информативностью. Способность предупреждать появление неисправностей выгодно отличает вибродиагностику от других методов диагностирования, позволяющих в основном контролировать состояние агрегата и обнаруживать неисправности.

По фактическим вибрационным сигналом определяют следующие состояния ЦНА:

-                Состояние исправности, когда уровень вибрационного сигнала находиться в поле допуска эталонного спектра; эталон получают при замерах вибросигнала исправного ЦНА, работающего под нагрузкой на кустовой насосной станции в начале эксплуатации;

-                Состояние удовлетворительной работоспособности, когда уровень вибросигнала может отличаться от эталонного уровня, что указывает на изменение режима работы ЦНА или зарождению дефектов, но которые оказывают значительное влияния на работоспособность агрегата;

-              Предельное (предаварийное) состояния ЦНА, при котором дальнейшая  эксплуатация  может привести к поломкам узлов и деталей агрегатов.

Уровни допустимых значений вибраций представлены в приложение А.

Спектр вибраций работающего ЦНА имеет весьма широкий диапазон, он зависит от множества факторов: частоты вращения ротора СД, элементов подшипников, зубчатых шестерен, подвижных элементов электродвигателя и насоса и др.  Диагностическими параметрами могут служить различные величины, в частности, пиковое значение (максимальная амплитуда), СКЗ (среднеквадратичное значение), среднее значение продетектированного сигнала, значение от пика до пика (размах), моменты спектральной плотности одномерных и многомерных законов распределения, различные комбинации количественных характеристик рабочих процессов и т.д. Обработка полученной информации осуществляется на базе спектрального и автокорреляционного анализа, анализа методом накопления, разделения сигнала во времени, фильтрации сигналов и др.[1].




1.2       Спектральный анализ

Периодическая вибрация может быть представлена в виде спектра. В нем может быть одна составляющая или много кратных. Спектр удобен тем, что он делит вибрацию на составляющие с разными свойствами достаточно часто разной природы. Типовой спектр характеризуется большим количеством гармонических составляющих в области низких частот. По мере увеличения частоты гармонических составляющих становиться меньше и в области высоких частот они практически отсутствуют [1].

На реальном оборудование можно выделить множество каналов с различными характеристиками, определяющим способность пропускать, искажать и подавлять сигнал при его прохождение по каналу от источника возникновения к приемнику. Эту способность передачи сигналов необходимо учитывать для получения необходимой и достоверной информации [1].

Существует много частных методов проведения и анализа результатов диагностирования. Выбор той или иной методики при этом производится, исходя из специфики предметной области. Однако до сих пор не проанализированы, не классифицированы и не выработаны принципы назначения процессуально-аппаратных средств для проведения диагностики в рамках конкретных областей деятельности специалиста НК.  Широкий выбор средств диагностирования, отсутствие стандартов и требований в области разработки программных продуктов для обеспечения процесса спектрального анализа привели к тому, что в конкретной ситуации специалист вынужден руководствоваться скорее второстепенными параметрами (цена, близость представительств дилеров разработчиков и др.), чем существенными характеристиками (возможность прогнозирования, добавления методик диагностирования и т.п.) таких систем. Среди российских фирм-разработчиков вибродиагностического ПО, обслуживающих НГДП, следует отметить:

-                ИТЦ "Оргтехдиагностика": Виброник, Виброанализ-2.5, Программный тренажер по вибродиагностике ;

-                ОАО "ДИАМЕХ-2000": ДИАМАНТ2;

-                ООО НПП "Мера": ПП ПОС, WinPOS ;

Преобразование Фурье

Дискретное преобразование Фурье — это одно из преобразований Фурье, широко применяемых в алгоритмах обработки сигналов, а также в других областях, связанных с анализом частот в дискретном (к примеру, оцифрованном аналоговом) сигнале. Последовательность N комплексных чисел x0, ..., xN−1 преобразовывается в последовательность из N комплексных чисел X0, ..., XN−1 с помощью дискретного преобразования Фурье по формуле:


                                                                                                   (1)


                                                                                      (2)


где n=0, k=0, N-1.

где i - это мнимая единица. Обратное дискретное преобразование Фурье задается формулой.

На практике для выполнения преобразования используется быстрое преобразование Фурье.

Быстрое преобразование Фурье-быстрый алгоритм вычисления дискретного преобразования Фурье. Согласно этому алгоритму входная последовательность делится на группы (например, четные и нечетные отсчеты), и для каждой из них выполняется ДПФ, а затем полученные результаты объединяются. В итоге получается ДПФ входной последовательности – и существенная экономия времени [2].


1.3 Технические средства анализа вибрации

Общая структура систем измерения и анализа вибрации, будь то технические средства вибрационного контроля и защиты, вибрационного мониторинга или диагностики, включает в себя первичные измерительные преобразователи, согласующие устройства, линии связи, собственно средства анализа, базу данных (в простейшем случае - пороговые устройства) и средства (программы) обработки информации (см. рисунок 1).

 




                 Линии связи

 





ИП - измерительные преобразователи, УС - устройства согласования,

АН - анализатор, БД - база данных, СОИ - средства обработки информации.

Рисунок 1 - Структурная схема системы измерения и анализа вибрации


В зависимости от задач, решаемых с помощью приборов или систем измерения и анализа вибрации, к ним предъявляются различные технические требования. Существующие технические средства можно классифицировать следующим образом:

а)       средства допускового контроля и аварийной защиты;

б)       индикаторы состояния объектов контроля;

в)       средства вибрационного мониторинга;

г)        средства вибрационной диагностики;

д)       исследовательские приборы и системы.

Все средства измерения и анализа вибрации используют измерительные вибропреобразователи, причем чаще других применяются пьезоэлектрические преобразователи виброускорения (акселерометры), оптические (лазерные) преобразователи виброскорости и токовихревые преобразователи относительного виброперемещения (проксиметры). Кроме них для обеспечения синхронных видов анализа вибрации часто используются либо оптические или токовихревые датчики оборотов, либо датчики тока (напряжения) синхронных электрических машин, в том числе генераторов электроэнергии. Для связи вибропреобразователя со средствами анализа используются линии проводной или беспроводной связи и согласующие устройства. В простейшем случае это предварительные усилители сигнала. Так, для пьезоакселерометров в зависимости от характеристик линии связи могут использоваться предварительные усилители напряжения, заряда или тока, причем достаточно часто для обеспечения высокой помехоустойчивости средств (особенно многоканальных) измерения и анализа вибрации предварительные усилители встраиваются в один корпус с акселерометром. В более сложных случаях согласующее устройство может выполнять функции предварительной фильтрации сигнала, в том числе антиалайзинговой, коммутации линий связи, преобразования сигнала в цифровую форму, а также ряд других.

Собственно анализатор является основой любого средства измерения и анализа вибрации, и может существовать как независимое устройство. В последнем случае могут предъявляться требования к характеристикам входных и выходных сигналов  [3].

1.4 Мобильная измерительная система  вибродиагностики

Мобильная измерительная система  вибродиагностики представляет собой комплекс  программных  и  технических  средств,  предназначенных  для  комплексного решения  задач  вибрационных  исследований и вибродиагностики.


1.4.1 Состав мобильной измерительной системы  вибродиагностики

В состав мобильной измерительной системы входят портативный прибор, обеспечивающий измерение и анализ вибрации в тяжелых промышленных условиях (Регистратор-Виброметр), компьютер с программами мониторинга (Программа регистрации и экспресс обработки MR-300. ( НПП «МЕРА»), программа  обработки  и  анализа  сигналов «WinПОС -Expert».   (НПП «МЕРА») и программа  вибродиагностики «Expert-VD» . (НТЦ «Тюме- ньинжиниринг»), содержащей базу данных и выполняющий ряд операций анализа сигналов и обработки результатов анализа, а также экспертная или автоматическая программа диагностики, обрабатывающая полученную диагностическую информацию и акселерометр.



Рисунок 2 – Структура мобильно-измерительной системы


Д – Акселерометр- датчик измеряющий значение виброускорения.

РВ - “Регистратор - Виброметр”- прибор  не выполняющие функций анализа, а только собирающие временные сигналы вибрации.

ПК – персональный компьютер с расширенной диагностической программой и базой данных.


         Функциональные возможности программ мониторинга приведены в приложение Б.


1.4.2 Принцип работы

“ Регистратор - Виброметр ” в режим виброметра принимают входные сигналы с акселерометра, интегрирует полученные значения и преобразуют их в цифровой. Набирает нужное количество измерений и производит вычисление среднего квадратичного значения виброскорости отображение на индикаторе.

В режиме регистратора “ Регистратор - Виброметр ” входные сигналы с акселерометра, преобразуют их в цифровой код и передают на персональный компьютер. На экране компьютера с помощью программ спектрального анализа можно просматривать форму сигналов, спектр, кепстр, фазу и т.д. Фильтрация, интегрирование, детектирование огибающей, вычисление спектра и другие преобразования осуществляются персональным компьютером.

В режиме регистратора “ Регистратор - Виброметр ” переходит при нажатии кнопки "Запись".  “ Регистратор - Виброметр ” производит запись сигналов вибродатчика  на жесткий диск персонального компьютера.  “Регистратор - Виброметр ” может так же записывать вибросигналы на Flash-накопитель автономно без персонального компьютера. Всегда записывается виброускорение.



1.4.3 Описание датчика


Основными характеристиками вибрации являются вибросмещение, виброскорость и виброускорение.  Процесс преобразования смещения в скорость или скорости в ускорение эквивалентен математической операции дифференцирования. Обратное преобразование ускорения в скорость и скорости в смещение называется интегрированием. Сегодня можно проводить эти операции внутри самих измерительных приборов и легко переходить от параметров измерения к другим.

На практике, однако, дифференцирование приводит к росту шумовой составляющей сигнала, и поэтому оно редко применяется. Интегрирование, напротив, может быть осуществлено с высокой точностью с помощью простых электрических цепей. Это является одной из причин, почему акселерометры сегодня стали основными датчиками вибрации: их выходной сигнал можно легко подвергнуть однократному или двукратному интегрированию и получить либо скорость, либо смещение. Интегрирование, однако, непригодно для сигналов с очень низкой частотой (ниже 1 Гц), так как в этой области уровни паразитного шума чрезвычайно увеличиваются и точность интегрирования падает. Большинство имеющихся на рынке интеграторов правильно работают на частотах выше 1 Гц, что достаточно почти для всех приложений, связанных с вибрациями [4].

Вибропреобразователь  типа  ВК-310А  представляют  собой пьезоэлектрический  акселерометр  с  согласующими  усилителями  и  предназначены  для применения  в  составе  аппаратуры  непрерывного  вибрационного  контроля,  защиты  и вибродиагностики  турбоагрегатов, питательных насосов двигателей нефтеперекачивающих и газокомпрессорных станций, вибродиагностики электрических станций и других объектов.

Вибропреобразователь ВК-310А - первичный измерительный пьезоэлектрический преобразователь со встроенным предусилителем.

-                Измеряемый параметр - виброускорение в рабочем диапазоне частот.

-                На выходе формируется сигнал переменного напряжения, пропорциональный мгновенному значению виброускорения.

-                Маркировка взрывозащиты 0ExiaIICT5 X.

-                Поставляется со шпилькой М5, магнитом или в комплекте с изолирующим треугольником по заказу.

-                Подключение через разъем типа РС-4ТВ или BNC, по заказу - подключение кабелем в металлорукаве через гермоввод.

-                Материал корпуса: алюминиевый сплав.[6]


1.4.4 Корпус устройства “Регистратор - Виброметр ”

В качаестве корпуса устройства “Регистратор - Виброметр ” используется малогабаритный корпус фирмы Bopla (серия BOSS 900). Чертеж корпуса для прибора с указанием основных размеров представлен на рисунке 3.


Рисунок 3 - Чертеж корпуса для прибора

Приборы в таких корпусах имеют отличный внешний вид и удобны в эксплуатации. Узкая нижняя часть корпуса позволяет уверенно держать прибор в руках, а в широкой верхней части достаточно места для дисплея. В корпусе размещаются две платы размером 70x140 мм. Объем корпуса можно увеличить, установив стандартную 10мм вставку. В корпусе имеется батарейный отсек для четырех пальчиковых гальванических элементов или аккумуляторов размера АА. Для корпусов этой серии выпускаются пленочные клавиатуры (ПК), которые устанавливаются в специальные посадочные места на лицевой панели. ПК могут быть рекомендованы к применению практически для всей гаммы приборной продукции. Благодаря клейкой основе на обратной стороне клавиатуры монтаж занимает считанные секунды. Подключение клавиатуры к печатной плате осуществляется посредством гибкого шлейфа [7].

 

1.4.5  Блок питания устройства “Регистратор - Виброметр ”

Блок питания прибора состоит из АБ, зарядного устройства для зарядки аккумуляторов (ЗУ), преобразователей напряжения DC/DC.

Обобщенная функциональная схема БП приведена на рисунке 4.

В блоке питания для зарядки аккумуляторов использован контроллер зарядного устройства MAX713, который позволяет заряжать никель-кадмиевые (NiCd) аккумуляторы. ЗУ на микросхеме MAX713, представляет собой источник постоянного тока с ограничением по напряжению и таймером. ЗУ позволяет заряжать как единичный элемент, так и батарею, состоящую из нескольких аккумуляторов. Число заряжаемых аккумуляторов программируется через выводы PGM0 (выв.3 DD2) и PGM1 (выв.4 DD2). В описываемом устройстве микросхема сконфигурирована для зарядки четырех аккумуляторов. Для этого на вывод PGM0 подано напряжение питания микросхемы (+V), а на вывод PGM1 — напряжение с минусового вывода аккумуляторной батареи (-BATT).


Рисунок 4 - Обобщенная функциональная схема БП


На микросхеме MAX1626 и полевом транзисторе собран понижающий ключевой преобразователь напряжения DC/DC. Микросхема MAX1626 представляет собой высокоэффективный контроллер понижающего преобразователя с выходным напряжением 3.3В. Работа преобразователя основана на том, что энергия порциями через низкоомный ключ подается на катушку индуктивности и накапливается в ней, а далее поступает на конденсатор. При этом выходное напряжение относительно входного понижается. Контроллер постоянно отслеживает выходное напряжение преобразователя через вывод «OUT». КПД преобразователя составляет 90-92%.

На вход преобразователя может подаваться напряжение от 3 до 14 вольт. Преобразователь работает от аккумуляторной батареи или от сетевого адаптера во время зарядки аккумуляторов. Микросхема MAX1626 позволяет построить DC/DC преобразователь с выходным током до 2 А. Максимальное значение выходного тока устанавливается резистором. В приведенной схеме максимальная величина тока нагрузки преобразователя равна 400 мА.

В разрабатываемом приборе, кроме напряжения +3,3 В, понадобятся и напряжение +5В для питания датчика, устройства согласования, ЖКИ и т.д. Широкое применение в современных устройствах нашли преобразователи постоянного напряжения на переключающихся конденсаторах.  Они не требуют катушек индуктивности, поскольку в них для сохранения и передачи энергии используются керамические конденсаторы.  Для получения необходимых дополнительных напряжений, в БП прибора были предусмотрены стабилизированный повышающий преобразователь напряжения на микросхеме MAX619 с выходным напряжением +5В [8],[9],[10].


1.4.6 Технические характеристики устройства “Регистратор-Виброметр ”


Количество каналов, 1;

Количество АЦП в каждом канале, 1;

Динамический диапазон , 140 дБ (±0.05мкВ ±5В);

Скорость передачи данных на ПК, 64 Кбайт/с;

Частотный диапазон, 10 - 10000 Гц;

Стандарты разрешение FFT, 1600 и 3200 линий;

Диапазон входных напряжений измерительного канала, +5В;

Внешний интерфейс, USB 2.0;

Питание прибора, АА батареи или аккумуляторы, 4 шт.