Лекции - Патофизиология (патофизиология печени)

ПАТОФИЗИОЛОГИЯ ПЕЧЕНИ

ПЕЧЕНЬ

S.Matern

ФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ.

Печень ответственна за снабжение организма энергией в качестВнве центрального метаболического органа.Она воспринимает из систеВнмы кровообращения воротной вены резорбированные из пищеварительВнного тракта вещества, расщепляет их и после метаболизирования снова переводит их в кровообращение.Таким образом, весь организм непрерывно снабжается аминокислотами, белками, углеводами и липиВндами.Печень может обезвреживать чужеродные экзогенные вещества, а также эндогенные синтезированные, обладающие токсическими свойсВнтвами вещества.Наконец, печень образует желчь, следовательно, пеВнчень обладает важной экскреционной функцией.Предпосылкой для поВннимания патофизиологии печени является понимание ее структуры и физиологической функции.

МИКРОСТРУКТУРА.

Микроанатомической структурной единицей печени является дольВнка, которая состоит из балок печеночных клеток, которые радиально отходят от центральной вены.Между балками пролегают синусоиды, которые воспринимают как артериальную, так и венозную кровь от разветвлений сосудов перипортальных областей, и они выложены сиВннусоидальным эндотелием и купферовскими клетками.Дольку печени окружают примерно 5-6 перипортальных полей.В перипортальных полях находятся, наряду с конечными разветвлениями портальной вены и а.hepatica, небольшие желчные ходы, которые впадают в протекающие между печеночными клетками желчные капилляры.От располагающихся в перипортальных полях концевых разветвлений сосудистых систем v.portae и a.hepatica через синусоиды печени к центральной вене оттекает кровь.Между выстланным эндотелием и купферовскими клетВнками, синусоидами и балками печеночных клеток находится простВнранство Дисса.Поскольку синусоиды характеризуются отсутствием баВнзальной мембраны, и пространство Дисса отграничено очень пористо синусоидальным эндотелием и купферовскими клетками, то плазма крови вытекает из синусоидов в пространство Дисса через эти поры, так что гепатоциты непосредственно омываются кровью.

ПЕЧЕНОЧНЫЙ АЦИНУС.

- 2 -

В то время как долька печени является микроанатомической суВнбединицей печени, печеночный ацинус представляет собой функциоВннальную микроединицу печени.Ацинус печени определяется как функВнциональная масса паренхимы печени, которая окружает перипортальВнное поле наименьшего калибра, и которая рбеспечивается артериальВнной и портально-венозной кровью этого перипортального поВнля(рис.34.1)

Рис.34.1.Концепция печеночного ацинуса по Раппапорту.

Кровь из афферентных сосудов портальных полей (П.Ф.), которая оттекает через синусоиды печени к центральным венам (ц.в.), омыВнвает гепатоциты зоны 1,2 и 3 со сниженным содержанием кислорода, питательных веществ и гормонов.Зона 1 гепатоцитов соседствует с портально-венозным поступление крови, зона 3 соседствует с печеВнночно-венозным оттоком крови.

--------------------

Артериальная и портально-венозная кровь перипортальных полей ацинуса печени протекает через синусоиды печени в две-три центВнральные вены по соседству с ацинусом, так что каждая центральная вена дольки печени получает кровь от многих ацинусов печени.

Гепатоциты, которые в области снабжения перипортального поля наименьшего калибра собираются в печеночный ацинус, характеризуВнются функциональным зонированием.Это зонирование отражает различВнное снабжение гепатоцитов одного ацинуса оксигенированной кровью, питательными веществами и гормонами, а также является отражением различного распределения метаболических функций гепатоцитами внутри одного ацинуса.Зона 1 охватывает гепатоциты, которые неВнпосредственно окружают перипортальное поле; эти гепатоциты омываВнются кровью с высокой степенью оксигенации и с высоким содержаниВнем питательных веществ и гормонов.Зона 3 охватывает гепатоциты, которые внутри ацинуса находятся дальше всего от снабжения кровью перипортального поля, между зонами 1 и 3 находится зона 2 (рис.34.1).

В ацинусе печени в гепатоцитах образуется желчь и сецернируВнется с желчные канальцы.Желчные канальцы представляют собой канаВнлы поперечником 1 мкм, которые образуются на противоположно лежаВнщих сторонах двух, максимально трех гепатоцитов.Стенка этих конВнцевых разветвлений отводящей желчь системы образована не из осоВнбых клеток, а из стенок гепатоцитов, так называемой каналикулярВнной мембраны (рис.34.2).Желчные канальцы через промежуточные отВнрезки соединяются с перипортальными желчными ходами, котрые объ-

- 3 -

единяются в большие внутрипеченочные ходы.

Рис.31.2. ? плазменной мембраны гепатоцитов и их функционироВнвание при транспорте желчных кислот, при зависимом от желчных кислот желчеобразовании и при транспорте веществ в гепатоциты или из них посредством эндоцитоза или экзоцитоза.В области синусоиВндальной мембраны гепатоцитов желчные кислоты поступают в гепатоВнциты посредством связанной с натрием системы носителя и в виде анионов активно выделяется через каналикулярную мембрану в желчВнный каналец.Посредством инвагинации синусоидальной мембраны и энВндоцитотического отшнуровывания происходит отшнуровывание везикул, благодаря чему вещества из пространства Дисса проходят в гепатоВнциты (напр., инсулин), или через гепатоциты к каналикулярной мембране (напр., Ig A).С другой стороны, образованне в аппарате Гольджи белки мембран или белки плазмы (напр., альбумин или фибВнриноген) транспортируются в форме везикул к синусоидальной мембВнране и после встраивания везикулярной мембраны в синусоидальную мембрану переносятся в пространство Дисса и затем в кровь.

Ультраструктура и функция составных частей печеночного ацинуса.

Важными структурными составными частями ацинуса печени являВнются гепатоциты, а также эндотелиальные клетки, купферовские клетки и липоциты печеночных синусоидов и пространства Дисса (рис.34.2).Клетки различаются не только в структурном отношении, но и по физиологической функции.В то время как клетки эндотелия из крови печеночных синусоидов посредством эндоцитоза забирают чужеродный материал, купферовские клетки, например, выполняют функцию разрушения эритроцитов.Липоциты, которые называются клетВнками ИТО, локализуются перисинусоидально между эндотелием синусоВнидов печени и гепатоцитами, вероятно, осуществляют транспорт жиВнров, при накоплении витамина А и фиброгенезе.

Гепатоциты.

Гепатоциты у человека занимают примерно 80-88% объема печени (64).Клеточная мембрана гепатоцитов может быть подразделена на три различных домена:

1.Синусоидальная область плазматической мембраны, которая прилежит к пространству Дисса.В этой области находятся нерегулярВнные микроворсинки, которые омываются плазмой крови промежутков Дисса и, таким образом, осуществляют быстрый обмен метаболитов и

- 4 -

продуктов секреции между кровью и гепатоцитами.

2.Интерцеллюлярная область плазматической мембраны, которая осуществляет особую функцию интерцеллюлярной адгезии и коммуникаВнции гепатоцитов.

3.Каналикулярная область плазматической мембраны, которая игВнрает особую роль в образовании и секреции желчи (рис.34.2).

Наряду с выполнением гепатоцитами функции транспортного эпиВнтелия, синусоидальная и интерцеллюлярная области плазматической мембраны представляют собой базолатеральную поверхность, и мембра-

на желчных канальцев является апикальной секреторной поверхностью.

В области базолатеральной мембраны гепатоцитов локализуется Nа+,К+-АТФаза, так что в этой области мембраны из клетки "прокаВнчиваются" ионы натрия и таким образом создается градиент натрия между перицеллюлярной жидкостью (интрацеллюлярное пространство и пространство Дисса) и интрацеллюлярным пространством.Поскольку в области базолатеральной мембраны гепатоцитов также и желчные кисВнлоты воспринимаются в гепатоциты посредством связанной с натрием системы переносчика через специфические рецепторы желчных кислот и они в качестве анионов активно сецернируются через мембрану желчных канальцев в просвет желчных канальцев, то между перисинуВнсоидальным и каналикулярным пространствами возникает положительВнный градиент натрия.Осмотическое равновесие и электронейтральВнность обусловлены тем, что парацеллюлярный поток воды и ионов натрия происходит вследствие наличия "тесных соединений" в желчВнных канальцах (рис.34.2).Таким образом, происходит зависимое от наличия желчных кислот образование желчи в желчных канальВнцах(8).Образование желчи, зависимое от наличия желчных кислот, локализуется преимущественно в зоне 1 ацинуса печени, поскольку энтерогепатически возрастающая концентрация желчных кислот и погВнлощение желчных кислот гепатоцитами в зоне 1 печеночного ацинуса самые большие (21).

Синусоидальная плазматическая мембрана гепатоцитов также в состоянии поглощать вещества посредством эндоцитоза.После инвагиВннации синусоидальной мембраны посредством отшнуровки образуются эндоцитотические или пиноцитотические пузырьки, которые транспорВнтируются к желчному канальцу и попадают в него.Таким образом досВнтигается не только встраивание компонентов селекционирующей плазВнматической мембраны в мембрану канальца, но, например, и трансВнпорт инсулина или сецернируемого в желчь Ig A от синусоидальной плазматической мембраны к мембране желчного канальца (61).На дру-

- 5 -

гой стороне в гепатоцитах могут новообразованные мембранные белки

или белки плазмы в форме везикул транспортироваться к синусоиВндальной мембране, везикулы могут встраиваться в синусоидальную мембрану, и белки плазмы посредством эндоцитоза доставляются в кровь (рис.34.2).Таким способом, например, альбумин, фибриноген или ЛПОНП выделяются из гепатоцитов в кровь.

Мембрана желчного канальца, которая в форме микроворсинок выступает в просвет желчного канальца, представляет собой замечаВнтельный структурный компонент для образования желчи.Желчные кисВнлоты модулируют проницаемость этой мембраны и играют, вследствие их свойств как детергентов, важную роль при выделении составных частей мембраны или ферментов (напр., щелочной фосфатазы,5`-нукВнлеотидазы или фосфодиестеразы) из мембраны канальцев в желчь.

В области внутриклеточной плазматической мембраны соседние гепатоциты соединены между собой при помощи соединительных компВнлексов."Тесные соединения", которые также называют как Zona occВнludens, отделяют просвет желчных канальцев от интерцеллюлярного пространства или пространства Дисса, но осуществляют парацеллюВнлярный поток воды и катионов (напр., ионов натрия) из интерцеллюВнлярного пространства и пространства Дисса в просвет желчного каВннальца (рис.34.2).Параллельно с "тесными соединениями" вдоль желчного канальца находятся "промежуточные соединения", которые содержат конрактильные микрофиламенты.Посредством похожих на пеВнристальтику сокращений периканаликулярно расположенных узлов из микрофиламентов в "промежуточных соединениях" выполняются не только проталкивающие эффекты в канальцах, а также механическая сила воздействует на интерцеллюлярную мембрану для клеточных поВнтоков воды и ионов. "Соединения промежутков" представляют собой агрегаты интрамембранных частиц в области интерцеллюлярной плазВнматической мембраны, которые формируют через интерцеллюлярные промежутки от гепатоцита к гепатоциту небольшие каналы.Эти каналы проходимы для ионов и небольших молекул, и таким образом осущестВнвляют межклеточные коммуникации, что имеет большое значение для координации секреции желчи в гепатоцитах (21).При холестазе, коВнторый представляет собой нарушение секреции желчи, повышается проницаемость "тесных соединений", барьерная функция "тесных соеВндинений", которые разъединяют в норме желчь от интерцеллюлярного пространства, в просвете канальца, нарушена.Это выражается в хоВнлестазе в обратном токе желчи в пространство Дисса, что клиничесВнки проявляется в форме желтухи и выражается, например, в повыше-

- 6 -

нии концентрации желчных кислот в сыворотке.Плазматическая мембВнрана со структурно и функционально различными доменами окружает цитоплазму гепатоцитов, в которых содержатся многочисленные клеВнточные органеллы, как митохондрии, эндоплазматический ретикулум, лизосомы, аппарат Гольджи или цитоскелет.

Эндоплазматический ретикулум гепатоцитов, который у взрослых людей на 40% состоит из шероховатого (содержащего рибосомы) и на 60% из гладкого эндоплазматического ретикулума, может быть при болезнях печени поврежден как в структурном, так и в функциональВнном отношениях.Синтез белков происходит, главным образом, в шероВнховатом эндоплазматическом ретикулуме перипортальных гепатоцитов зоны 1 легочного ацинуса.Глазкий эндоплазматический ретикулум отВнветственен за синтез липидов, накопление гликогена, биотрансфорВнмацию стероидов, медикаментов и карциногенов, он содержит ферменВнты биосинтеза холестерина, желчных кислот, а также уридиндифосВнфат-(УДФ)-глюкуронилтрансферазы, которые, помимо всего прочего, ответственны за конъюгацию медикаментов, билирубина и желчных кислот с глюкуроновой кислотой (57,67).Следовательно, гладкий энВндоплазматический ретикулум имеет функцию обезвреживания ядов.При холестазе, несмотря на гипертрофию, возникает гипоактивность гладкого эндоплазматического ретикулума (68).

Лизосомы богаты гидролитическими ферментами.При холестазе наблюдается повышение числа гепатоцитных лизосом, которые могут содержать билирубин, поврежденные цитоплазматические компоненты и другие составные части мембран (21).В случае болезни Вильсона наблюдается накопление меди и при гемохроматозе-железа, в лизосоВнмах.

Аппарат Гольджи находится в многообразных взаимоотношениях с эндоплазматическим ретикулумом и лизосомами, что выражается в концепции GERL-комплекса (Goldi, endoplasmatische Reticulum, LiВнsosomen)(62).Аппарат Гольджи имеет функцию "переносчика", наприВнмер, в секреции альбумина, фибриногена и ЛПОНП, через синусоиВндальную плазматическую мембрану в кровь, а также в направлении желчного канальца, например, при переносе конъюгатов глютатиона в желчь.Таким образом, аппарат Гольджи участвует в секреции желчи и обнаруживает изменения как при холестазе, так и при холорезе (21).

Цитоскелет гепатоцитов состоит из микротрубочек и микрофилаВнментов.Среди микрофиламентов различают актинмикрофиламенты, миоВнзиновые микрофиламенты и интермедиарные микрофиламенты.АктиномикВнрофиламенты особенно расположены вокруг желчного канальца, но

- 7 -

связаны с "тесными соединениями". Посредством похожих на перисВнтальтику сокращений вокруг желчного канльца и посредством изменеВнний плотности "тесных соединений". Микротрубочки с их полыми структурами являются важной составной чатью структуры гепатоцита и играют важную роль во внутриклеточном транспорте метаболитов и новосинтезированного белка (21).

Хотя все гепатоциты обладают такими структурами и метаболиВнческими способностями, из структурной концепции печеночного ациВннуса вытекает модель метаболического зонирования печеночной паВнренхимы с уменьшением оксигенации, а также концентрации субстрата и гормонов в крови от зоны 1 к зоне 3.

Метаболическое зонирование печеночной паренхимы. Функциональная микроструктура печени в форме печеночного аци-

нуса находит свое отражение в модели "метаболического зонирования

печеночной паренхимы" (44). Гепатоцит в перипортальной и перивеВннозной зоны паренхимы печени в ацинусе различаются по своему снабжению ферментами и субклеточными структурами. Если принять, что активность ключевых ферментов определяют величину способности метаболизма, то можно представить различные функции для перипорВнтальной и перивенозной зон (43) (Таб.34.1). Такие при равном геВнпатоцеллюлярном содержании ферментов во всех клетках паренхимы печеночного ацинуса возможны различные метаболические функции в различных зонах ацинуса, поскольку зоны подвергаются различному управлению посредством различий в концентрации притекающих субсВнтратов.

Таким образом, концентрация кислорода в перипортальной крови увеличивается и становится такой же, как и в перивенозной крови, также и взаимоотношения отдельных грмонов, как инсулин, глюкагон, катехоламины изменяются во время пассажа по печени, поскольку скорость расхода отдельных гормонов может быть различной. Это озВнначает, что перипортальная зона характеризуется гормональными приказами, по сравнению с перивенозной зоной, возникает зональная гетеррогенность сигнала (42, 43).

Таблица 34.1. Модель метаболического зонирования печеночной паренхимы (по Fungermann)

-----------------------------------------------------------------

Перипортальная зона Перивенозная зона

- 8 -

Окислительный энергетический метаболизм

Окисление жирных кислот

Цитратный цикл

Дыхательная цепь

Выделение глюкозы

Глюконеогенез

Синтез гликогена из лактата

Распад гликогена до глюкозы

Превращение аминокислот

Переход аминокислот до глюВнкозы

Распад аминокислот

Синтез мочевины из азота аминокислот

Поглощение глюкозы

Гликолиз

Синтез гликогена из глюкозы

Распад гликогена до лактата

Липонеогенез

Обезвреживание Синтез мочевины Оксидативная защита Выделение желчных кислот Выделение билирубина

NН 43

Образование глутамина

Биотрансформация

Общая и специальная патофизиология.

Обмен и печень.

Печень в качестве центрального метаболического органа выполВнняет важную роль в обмене углеводов, жиров и протеинов.

Обмен углеводов и печень.

Ключевую роль выполняет печень при поддержании гемостаза глюВнкозы.

В пострезорбтивной фазе, примерно черер 4 часа после приема пищи, потребность организма в глюкозе составляет примерно 7,5 г в час, причем мозг потребляет 6 г в час и эритроциты 1,5 г в час.Эта потребность в глюкозе покрывается печенью, где 4,5 г в час поставляется за счет распада гликогена и 3 г в час - глюконеВногенезом из лактата, аминокислот и глицерина (43).

При обычном питании с потреблением углеводов, равном примерно

- 9 -

100 г эквивалента глюкозы во время еды в ходе фазы резорбции только в первые оба часа после приема пищи всасывается примерно 40-60 г глюкозы в час.Мозг и эритроциты потребляют только примерВнно 7,5 г в час.Избыточная глюкоза прежде всего воспринимается пеВнченью, превращается в гликоген, жир или в СО2.Инсулин, который при всасывании глюкозы одновременно выделяется в кровь воротной вены, стимулирует это поглощение глюкозы и превращение.

Фруктоза превращается в печени при помощи фермента фруктокиВнназы во фруктозо-1-фосфат и, наконец,альдолазой печени переводитВнся в триозы глицеринальдегид и дигидроксиацетон-фосфат, которые могут метаболизироваться в лактат.Таким способом в нормальной пеВнчени в лактат превращается около 70% поглощенной фруктозы.При инВнфузии фруктозы происходит повышение уровня лактата в сыворотке в 2-5 раз с развитием лактатацидоза, в то время как при инфузии глюкозы в крови наблюдается лишь двукратный подъем концентрации лактата.Причиной развития лактатацидоза при инфузии фруктозы, в отличие от инфузии глюкозы можно усматривать в том, что вследсВнтвие очень высокой активности фруктокиназы в печени, с полувремеВннем, равным 18 минутам, фруктоза очень быстро переводится в печеВнни в лактат.

Галактоза в тонком кишечнике освобождается из лактозы, при пассаже крови воротной вены через печень почти полностью удаляетВнся посредством фосфорелирования специфической галактокиназой из крови.Элиминация галактозы через рот или после внутривенной инъВнекции галактозы применяется для характеризации функции печени (86).

Нарушения метаболизма углеводов при заболеваниях печени.

Поскольку печень работает как глюкостат для целей глюкозогоВнмеостаза организма человека, то заболевания печени ведут к гипогВнликемии, но чаще к гипергликемии ("гепатогенный диабет").ГенетиВнчески обусловленные дефекты в метаболизме углеводов в печени веВндут к тяжелым врожденным заболеваниям с функциональными ограничеВнниями печени.

Гипергликемия и "гепатогенный диабет".

При хронических заболеваниях печени, особенно при циррозах, часто наблюдается нарушение гомеостаза глюкозы.Нарушение гомеосВнтаза глюкозы у больных с циррозом печени выявляется часто при проведении тестов на толерантность к инсулину (18).Примерно поло-

- 10 -

вина всех больных с циррозом печени обнаруживают патологическую

толерантность печени и в 10% мягкий корригируемый диетой и сульВнфанилмочевины сахарный диабет(18).

Наблюдаемый при циррозе печени гиперинсулинизм является следствием уменьшенного распада инсулина в печени.С другой стороВнны, несмотря на повышение периферического уровня инсулина, в кроВнви у больных с циррозом печени наблюдается уменьшение толерантВнности к глюкозе, у больных с циррозом печени наблюдается резисВнтентность к инсулину.Резистентность к инсулину является следствиВнем уменьшения сродства или числа рецепторов инсулина, поскольку у больных с циррозом печени наблюдается уменьшение числа рецепторов инсулина в моноцитах, эритроцитах и жировых клетках (60,85).В неВнкоторых случаях резистентность к инсулину дополнительно может быть обусловлена дефектом рецепторов, а также нарушением реакций, которые ведут к активированию рецепторов пострецепторными дефек-

тами.Резистентность к инсулину, с другой стороны, снова приводит

к уменьшению толерантности глюкозы.Таким образом, патогенез гепаВнтогенного сахарного диабета попадает в порочный круг, в котором заболевание печени ведет к уменьшению степени превращения глюкозы и, следовательно, к гипергликемии.Гипергликемия ведет к гиперинВнсулинемии, поскольку распад инсулина в печени замедляется при повреждениях печени.Гиперинсулинемия характеризуется ?"Догоп"-ре-

гуляцией рецепторов инсулина, и понижением числа рецепторов инсуВнлина, следствием чего является резистентность инсулина.РезистентВнность инсулина ведет к гипергликемии через понижение превращения глюкозы.

Гипогликемия.

Напротив, гипогликемия при заболеваниях печени наблюдается редко, поскольку эта функция занимает только примерно 20% паренВнхимы печени, и чтобы избежать снижения уровня сахара крови до гиВнпогликемических значений, и поскольку почки могут воспринимать

часть образования глюкозы печенью при хронических заболеваниях

печени.По этой причине гипогликемии прежде всего наблюдаются

только при остром гепатите, который частично является следствием

понижения запасов гликогена, нарушений снабжения глюкозой и наруВншений глюконеогенеза в печени, а также уменьшения степени активаВнции инсулина печенью.

Нарушения метаболизма галактозы.

- 11 -

При галактозэмии имеет место генетический недостаток галактоВнзо-1-фосфат-уридилтрансферазы, так что может может возникнуть неВндостаток галактозы, галактитела и галактозо-1-фосфата в теле при повреждении функции печени, почек и мозга и при развитии катаракВнты.Поскольку галактоза является составной частью молочного сахаВнра, то клиническая симптоматика развивается сразу после рождения и требует немедленного питания младенцев без галактозы.

Болезни запасания гликогена.

Болезни накопления гликогена характеризуются нарушениями меВнтаболизма с отложением гликогена в различных органах, в основном, в печени, в мышцах и в почках.В соответствии с генетически обусВнловленным дефектом фермента различают 10 различных типов заболеВнвания накопления гликогена (табл.34.2).Господствующее проявление симптомов в печени прежде всего наблюдается при типах 1,3,6, и

9.Клинически при заболеваниях накопления гликогена вследствие уменьшенного освобождения глюкозы из гликогена следует особое внимание обращать на гипогликемию при уменьшении потребления пиВнщи, так что становится необходимым последовательное трехчасовое питание в течение дня, а также ночью, во избежание гипогликемии.

Метаболизм белков и печень.

У взрослых людей с весом тела около 70 кг 12 кг относятся к белкам, из которых 200-300 г. ежедневно подлежат расходу и неоВнсинтезу. Из них белки мускулатуры составляют 53% и белки печени 20%. После мускулатуры + печень - орган с наиболее интенсивным синтезом белка. Печень синтезирует из аминокислот ежедневно 50 г. белка, из которых 12 г. относятся к альбумину. Также и другие белки плазмы, например, фибриноген, факторы свертывания, альВнфа 41 0-антитрипсин, апопротеины, церулоплазмин - синтезируются в ко-

нечном итоге в печени. Необходимые для синтеза белков аминокислоВнты в основном получаются при распаде эндогенных белков, при биоВнсинтезе неэссенциальных аминокислот и из поставляемых с питанием белков, которых следует принимать около 90 г. При уменьшении ежедневного подвода белков до 45 г возникает отрицательный баланс азота.

Обмен аминокислот и печень.

Пчень занимает такие центральное место в аминокислотном обмеВнне (рис.34.4) (29). Спектр аминокислот, подвозимых в крови пор-

- 12 -

тальной вены в печень, претерпевает в печени изменения, поскольку

аминокислоты частично могут распадаться до мочевины, частично

участвуют в биосинтезе белков или глюкозы, частично проходит чеВнрез печень неизмененными. Поскольку в печени преимущественно расВнпадаются ароматические аминокислоты (фенилаланин, тирозин и метиВнонин), в мускулатуре распадаются главным образом аминокислоты с разветвленной цепью (валин, лейцин или изолейцин), кровь печеночВнной вены содержит относительно более высокий уровень аминокислот с разветвленными цепями, по сравнению с кровью воротной вены.АмиВннокислоты с разветвленными цепями в мускулатуре и в головном мозВнге служат для получения энергии.Напротив,ароматические аминокисВнлоты, которые конкурируют с аминокислотами с разветвленными цепяВнми за транспортные системы в гематоэнцефалическом барьере, превВнращаются в нейротрансмиттеры.Обезвреживание аммиака в головном мозге достигается посредством образования глютамина из глютамаВнта.Глютамин с кровью транспортируется к почкам и к печени, и слуВнжит в почках в качестве субстрата для выведения аммиака в мозге и, следовательно,для регуляции кислотно-щелочного равновесия при помощи почек.В печени происходит обезвоживание аммиака из глютаВнмина через цикл мочевины.Образование мочевины представляет собой определенную ступень обезвреживания мочевины в печени, поскольку мочевина выделяется с мочой, и образование мочевины является неВнобратимым.

Обезвреживание аммиака и функция печени в качестве регулятора величины рН.

Биосинтез мочевины и глютамина представляет собой важнейшую возможность обезвреживания аммиака печенью.Синтез мочевины происВнходит в печени, в цикле мочевины, открытом Krebs и Henseleit (46).Глютамин образуется при переносе аммиака из глютамата посВнредством глютаминсинтетазы.Отщепление ионов аммония от глютамина производится посредством глютаминазы.Синтез и расщепление глютаВнмина происходит совместно в глютаминовом цикле.В соответствии с концепцией метаболического зонирования печеночного ацинуса цикл мочевины и реакция глютаминазы глютаминового цикла локализуется в перипортальной зоне, в то время как реакция глютаминсинтетазы глютаминового цикла находится в перивенозной зоне (32)(рис.34.5).Поскольку фермент, определяющий скорость цикла моВнчевины, локализующегося перипортально, карбамилфосфатсинтетаза

имеет незначительное сродство с ионами аммония (Кm=1-2мМ/л), по

- 13 -

сравнению с перивенозно локализуемой глютаминсинтетазой глютамиВннового цикла (Кm=0,3мМ/л), обезвреживает только при высоких конВнцентрациях аммония в цикле мочевины.Ионы аммиака, которые обезвВнреживаются при токе перипортальной крови от перипортального в пеВнривенозном направлении не через цикл мочевины, происходит вследсВнтвие высокого сродства глютаминсинтетазы к аммиаку еще в перивеВннозной зоне печеночного ацинуса.Таким образом, аммиак в физиолоВнгических концентрацией портальной крови (0,3мМ/л) обезвреживается посредством образования мочевины,а также посредством синтеза глюВнтамина.

Поскольку при синтезе мочевины в печени, наряду с ионами амВнмония, также используются ионы бикарбоната (см. суммарную формулу на рис.34.5) и синтезируемый в печени, транспортируемый к почкам глютамин выводится в виде ионов аммония посредством печеночной глютаминазы в мочу, и печень в состоянии стабилизировать значение рН посредством изменения скорости синтеза глютамина - таким обраВнзом, печень обладает функцией стабилизатора величины рН.

При метаболическом ацидозе в печени понижается скорость синВнтеза мочевины, в ней снижается уровень бикарбоната.Скорость синВнтеза глютамина в печени повышается, транспортируемый к почкам глютамин отдает больше ионов аммония и, следовательно, протонов в мочу.При метаболическом алкалозе необратимо повышается синтез моВнчевины, расходуется больше бикарбоната.Напротив, вследствие уменьшенного синтеза глютамина в печени, почки уменьшают подачу глютамина для выведения ионов аммония в мочу (рис.34.5).

Нарушения метаболизма аминокислот

и синтеза мочевины при болезнях печени.

При острых и хронических заболеваниях печени могут возникать изменения обмена аминокислот и белков вследствие уменьшения функВнциональной массы гепатоцитов и вследствие наличия портосистемного шунта потока крови.

Нарушения обмена аминокислот при хронических заболеваниях пеВнчени выявляются тем, что спектр аминокислот в плазме по сравнению со здоровыми при хронических заболеваниях печени характеризуется понижением содержания аминокислот с разветвленными цепями на 30-50% (лейцин, изолейцин, валин) и повышением содержания аромаВнтических аминокислот (тирозин, фениламин и метионин).Понижение содержания аминокислот с разветвленными ?аминокислотами(цепями) приводит при хронических заболеваниях печени к наблюдаемой гипе-

- 14 -

ринсулинемии.Гиперинсулинемия обусловлена повышенным распадом

аминокислот с разветвленными цепями на переферии, в мускулатуре и

жировой ткани (84) и, следовательно, к понижению содержания этих

аминокислот в плазме.Повышение содержания ароматических аминокис-

лот в плазме при хронических заболеваниях печени объяснсется

уменьшением распада этих аминокислот в печени вследствие нарушеВнния функций печени, поскольку содержание ключевых печеночных ферВнментов распада ароматических аминокислот, для триптофана - трипВнтофанпирролаза, в печени понижено (84).

Поскольку при хронических болезнях печени и при циррозе также уменьшена скорость синтеза мочевины вследствие уменьшения содерВнжания ферментов цикла мочевины, таким образом, объясняется повыВншение содержания аминокислот плазмы, особенно ароматических амиВннокислот, а также в уменьшенном распаде аминокислот в цикле мочеВнвины (32).Поскольку обезвоживание ионов аммония в цикле мочевины локализуется в перипортальной зоне печеночного ацинуса, и при циррозе особенно повреждается морфологически перипортальный региВнон, что объясняется уменьшением скорости синтеза мочевины при хронических заболеваниях печени и наступившей гипераммониемией, а также склонностью к развитию метаболического алкалоза.МетаболиВнческий алкалоз имеет место при хронических заболеваниях печени вследствие снижения потребления бикарбоната вследствие уменьшения скорости синтеза мочевины, причем компенсаторно для обезвреживаВнния аммиака в перивенозной зоне печеночного ацинуса может быть повышен синтез глютамина.(32)(рис.34.5).

При наличии застойной печени перивенозная зона печеночного ацинуса необратимо повреждена в отношении обезвреживания ионов аммония посредством синтеза глютамина.Это может приводить к метаВнболическому ацидозу вследствие уменьшенного выделения аммония почками при застойной печени (32).Таким образом, изменения метаВнболизма аминокислот и обезвреживания аммония при хронических боВнлезнях печени представляют собой важные факторы в патогенезе изВнменений кислотно-щелочного равновесия и в возникновении печеночВнной энцефалопатии.

Нарушения метаболизма белка при заболеваниях печени.

Изменения белков плазмы при заболеваниях печени могут отраВнжать изменения биосинтеза белка в печени, поскольку многие белки плазмы синтезируются исключительно в печени.

- 15 -

Альбумин: больные с циррозом печени часто имеют пониженный уровень сывороточных альбуминов.Этот уровень может быть отражениВнем пониженного запаса альбуминов в плазме, а может при нормальном запасе плазменных альбуминов быть также выражением эффекта разВнбавления.Так, у больных с циррозом печени и гипоальбуминемией, а также с асцитом часто наблюдается нормальный запас альбумина в плазме и даже повышенный общий альбумин в теле, вследствие повыВншения экстраваскулярного запаса альбумина.Таким образом, при хаВнрактеризации метаболизма альбуминов при болезнях печени следует проводить различие между больными с асцитом и без него.

У больных с циррозом печени без асцита гипоальбуминемия обозВнначает уменьшение синтеза альбуминов, интраваскулярного запаса альбуминов и общего альбумина всего тела.Ежедневный синтез альбуВнмина может уменьшаться при циррозе с 10-12 г до 4 г.

У больных с циррозом печени с асцитом, несмотря на гипоальбуВнминемию, синтез альбумина, напротив, очень часто бывает нормальВнным.Секреция синтезируемого в гепатоцитах альбумина в плазму моВнжет нарушаться коллагеном цирроза, так что до 89% новосинтезироВнванного альбумина непосредственно переходит в асцит и, таким обВнразом, несмотря на нормальный синтез альбумина, может возникать гипоальбуминемия.По этой причине уровень сывороточного альбумина не находит выражения в производительности синтеза печенью, вследствие длительного времени полужизни распада альбумина, котоВнрое составляет около 3-х недель. Напротив, определение факторов свертывания в крови является отражением производительности синтеВнза в печени, поскольку время полужизни факторов свертывания очень невелико.

Факторы свертывания: печень играет важную роль в гемостазе, поскольку она ответственна за синтез большинства факторов свертыВнвания и за распад фибринолитических факторов.Печень синтезирует фибриноген (фактор 1) и факторы свертывания 5, 7, 9 и 10, причем, за исключением фибриногена, все другие факторы для синтеза нуждаВнются в витамине К.Тяжелые острые болезни печени могут, посредсВнтвом выпадения функции печени, вследствие уменьшения синтеза, привести к быстрому падению содержания факторов свертывания 2, 5, 7 и 10 с удлинением протромбинового времени, поскольку время поВнлужизни факторов свертывания лежит между 2 и 4 днями.Уровень фибВнриногена в крови, как правило, не уменьшен.Поскльку для синтеза факторов свертывания 2, 7, 9 и 10 также необходим витамин К, коВнторый в качестве жирорастворимого витамина в кишечнике всасывает-

- 16 -

ся при участии желчных кислот и образуется микробами кишечника,

то мальабсорбция, застойная желтуха и стерилизация содержимого

кишечника антибиотиками приводят к нарушениям свертывания вследсВнтвие дефицита витамина К. Введение витамина К устраняет при норВнмальной функции печени эти нарушения свертывания.

Наряду с факторами свертывания при тяжелых поражениях печеВнночной паренхимы вследствие нарушений синтеза активность холинэсВнтеразы и концентрации гаптоглобина и церулоплазмина в плазме поВннижены.

Экстрацеллюлярный фибриногенез. матрикс - коллаген.

Соединительная ткань экстрацеллюлярного матрикса печени соВндержит три основные группы макромолекул:

1. Коллаген; 2. Протеогликан и 3. Гликопротеины, которые все при циррозе печениобнаруживаются по повышенным концентрациям в печени (73).

Коллаген представляет собой гетерогенный класс протеинов, их аминокислотный состав на одну треть представлен глицином и на одВнну четверть пролином и гидрооксипролином. Коллаген очень устойчив по отношению к протеолитическому распаду, только специфические ферменты (коллагеназы) расщипляют коллаген.

В печени человека можновыделить пять различных типов коллагеВнна, имеющих структурные различия между собой: коллаген типа I, III, IV, V, VI. В нормальной печени человека коллаген типа I и типа III составляют примерно треть всего коллагена печени, котоВнрый соста

Вместе с этим смотрят:


Principala cauza a handicapului


Toma Cerba


РЖсторiя виникнення та розвитку масажу


Абдоминальная травма


Аборты