4.2. Обоснование, принятие и реализация управленческих решений

Как уже сказано выше, есть две группы методов обоснования (получения) управленческих решения: алгоритмические и эвристические.

Основным средством получения алгоритмических решений является исследование операций, под которым понимается комплекс научно-обоснованных методов, применяемых для поиска и выбора решений, наиболее эффективных в каком-либо заданном смысле или отвечающих какому-либо критерию. С помощью исследования операций находятся решения в самых различных сферах, в том числе, и в сфере управления.

Исследование операций по своей сути объединяет такие разделы современной математики, как теория вероятностей, теория массового обслуживания, математическое программирование (линейное, нелинейное, динамическое), метод динамики средних, сетевое планирование, теорию игр, теорию статистических решений и т.п. Методы исследования операций могут быть объединены в четыре основные группы:

Аналитические методы, характеризующиеся тем, что с их помощью устанавливаются аналитические (формульные) зависимости между условиями решаемой задачи (аргументами) и её результатами (функцией). Эти методы основаны на теории вероятностей, теории марковских процессов, теории массового обслуживания, методе динамики средних и некоторых других.

Вероятностно-статистические методы, основанные на сборе, обработке и анализе статистических данных, полученных как в результате фактических измерений, так и в результате моделирования на компьютере. С помощью этих методов вырабатываются решения, зависящие от случайных факторов. Эти методы также основаны на теории марковских процессов, но уже случайных, на теории массового обслуживания и методе динамики средних. Кроме того, в основе этих методов лежат чисто статистические подходы, такие как последовательная проверка статистических гипотез и метод статистических испытаний (метод Монте-Карло).

Методы математического программирования чаще всего используются при решении задач наилучшего распределения имеющихся в наличии ограниченных ресурсов, а также для составления рационального плана проведения какой-либо операции. Они основаны на:

• методах сетевого планирования, в основе которых лежит составление, так называемых, сетей операции, на которых определяются «критические пути», то есть те пути движения к цели, которые определяют темп развёртывания всех остальных процессов;

• методах линейного программирования, когда процессы удаётся описать математическими уравнениями первого порядка, и нелинейного программирования, когда процессы описываются математическими уравнениями второго и более высоких порядков;

• методах динамического программирования, когда каждый последующий этап рассматриваемого процесса зависит от результатов выполнения предыдущих процессов.

Теоретико-игровые методы предназначены для обоснования решений в условиях неопределённости (неполноты, неясности) ситуации. К этим методам относятся:

• собственно теория игр, которая используется в случаях, когда есть конфликтующие или конкурирующие стороны, то есть неопределённость для каждой стороны создаётся субъективными действиями противоборствующей;

• теория статистических решений, которая используется в случаях неопределённости обстановки, вызванной объективными причинами.

В результате применения алгоритмических методов в руках у разработчика управленческих решений оказывается некая формула или система соотношений, делая расчёты по которым он может обосновать необходимый набор вариантов решений.

Применение алгоритмических методов обоснования управленческих решений практически невозможно без использования компьютеров, так как все они базируются на огромных объёмах вычислений.

Также к алгоритмическим методам обоснования управленческих решений относятся методы моделирования, хотя некоторыми специалистами они выделяются в отдельную группу.

Модель – это объект любой природы, который способен заменить исследуемый объект-оригинал так, что данные, полученные в результате работы с ним, содержат некую новую информацию об оригинале.

В основе моделирования лежит постулат о том, что любая модель так или иначе отображает действительность. Выводы из этого постулата свидетельствуют о том, что любой оригинал может иметь множество моделей и по каждой из них можно получить какую-то объективную информацию об оригинале. Можно привести одну из типологий моделей:

1. Материальные модели:

1.1. Пространственно подобные, то есть совпадающие в пространстве

по геометрии и взаиморасположению частей и отличающиеся

только масштабами (размерами).

1.2. Физически подобные, то есть такие, в которых идут одинаковые

физические процессы.

1.3. Математически подобные, то есть такие, в которых процессы и

соотношения описываются одними и теми же математическими

формулами.

2. Мысленные (идеальные) модели:

2.1. Описательные (концептуальные), то есть основанные на

совпадении образов (концепций) оригинала и модели.

2.2. Наглядно-образные, то есть основанные на совпадении

чувственно-наглядных элементов оригинала и модели.

2.3. Знаковые, то есть процессы и состояния оригинала и модели

описываются одинаковыми знаками (формулами).

В результате проведения исследований на моделях в руках у разработчика управленческих решений оказывается набор данных, о которых с большой вероятностью можно сказать, что они отражают поведение оригинала в аналогичных случаях. Следовательно, используя их можно обосновать набор управленческих решений для оригинала.

В отличие от описанных выше алгоритмических методов обоснования управленческих решений эвристические методы не имеют в своей основе строгих правил. Как правило, они используются в случаях высокой неопределённости ситуации, когда не удаётся установить количественные соотношения между нужными факторами. Однако чаще всего к эвристическим методам прибегают тогда, когда финансовые ресурсы или время, выделенные на принятие управленческого решения, не позволяет проводить расчёты по алгоритмам и моделям. Эвристические методы в большой мере являются искусством, так как основаны на различных психологических явлениях, привычках, ассоциациях, явных или неявных аналогиях и других неочевидных факторах и субъективных моментах.

В результате применения эвристических методов трудно получить набор вариантов управленческих решений. Как правило, разработчик обосновывает, так называемое, «точечное» решение, являющееся оптимальным для очень конкретного случая и без понимания влияния на него каких-либо факторов. Но известно множество случаев, когда и «точечное» решение являлось приемлемым выходом из сложной ситуации. Также следует отметить, что основное количество управленческих решений принимается именно эвристическими методами, то есть на основе аналогий, опыта, знания ситуации, привычек и т.п.

Принятие управленческого решения – это процесс содержательного преобразования информации об объекте управления в управленческую информацию, то есть в варианты решений и критерии эффективности принимаемых решений. Способы обоснования (получения) необходимой информации рассмотрены выше, а собственно подготовка и принятие управленческого решения производится по следующему алгоритму:

• поиск и выработка вариантов решений;

• выбор критериев оценки эффективности решения;

• проверка найденных вариантов решений по выбранным критериям;

• отбор решения в наибольшей степени удовлетворяющего отобранным критериям;

• проверка отобранного решения на каких-либо частных случаях;

• при положительных результатах проверки применение отобранного решения ко всей совокупности случаев; при отрицательных результатах проверки – возврат к этапу отбора решений или даже к этапу выбора критериев эффективности.

После принятия начинается процесс реализации управленческого решения, то есть внедрение его в практическую деятельность организации. Следует отметить, что реализация управленческого решения всегда связана с какими-то изменениями в деятельности организации, а любые изменения всегда связаны с расходованием каких-либо ресурсов. Таким образом, реализация управленческого решения в любой организации всегда должна быть экономически обоснованной. В противном случае решение просто не будет исполняться

< Назад   Вперед >

Содержание