<< Пред.           стр. 6 (из 7)           След. >>

Список литературы по разделу

  Другой обширный ряд функций вакуолей связан с накоплением запасных веществ, таких, как сахара и белки. Сахара в вакуолях содержатся в виде растворов, встречаются и резервные полисахариды типа инулина. В вакуолях происходит запасание белков, что характерно для семян. Поступление белков в вакуоли, вероятнее всего, связано со способностью вакуолей ЭР и АГ сливаться с тонопластом. Запасание белков семян злаковых происходит в так называемых алейроновых вакуолях, которые заполняются альбуминами и глобулинами, после чего вакуоли обезвоживаются, превращаясь в твердые алейроновые зерна. При прорастании семян эти зерна обводняются и снова превращаются в вакуоли. В таких новообразованных вакуолях выявляется активность некоторых ферментов, кислой фосфатазы, ?-амилазы, глюкозидазы, протеиназы и РНКазы. Следовательно, алейроновые вакуоли отчасти напоминают лизосомы, где происходит переваривание запасных белков при прорастании семян.
  Гидролитические ферменты были обнаружены не только в алейроновых вакуолях, но и в мелких и крупных центральных вакуолях. Наблюдалась неоднократно инвагинация, впячивание тонопласта внутрь вакуолей, при этом часть "втянутого" материала оказывается в полости вакуоли и там деградирует. Возможно, так выполняется аутофагическая функция вакуолей, участвующих в гидролизе дефектных клеточных компонентов. Лизосомными свойствами обладают вакуоли дрожжей. Было обнаружено, что стенки вакуолей дрожжей тоже могут образовывать впячивания внутрь, затем они отщепляются от тонопласта и растворяются внутри вакуоли.
  Сферосомы
  Это мембранные пузырьки, встречающиеся в клетках растений, они окрашиваются липофильными красителями, имеют высокий коэффициент преломления и поэтому хорошо видны в световой микроскоп. Сферосомы образуются из элементов эндоплазматического ретикулума. На конце цистерны ЭР начинает накапливаться осмиофильный материал, затем от этого участка отшнуровывается и начинает расти мелкий пузырек, достигающий диаметра 0,1-0,5 мкм. Это "просферосома", окруженная одинарной мембраной. Рост сферосом и перестройка их содержимого связаны с накоплением в них масла, так что сферосома постепенно превращается в масляную каплю. Отложение липидов начинается между осмиофильными слоями мембраны. Кроме жиров в составе сферосом обнаруживают белки и среди них фермент липазу, расщепляющую липиды.
  Пероксисомы (микротельца)
  Это небольшие вакуоли (0,3-1,5 мкм), одетые одинарной мембраной, отграничивающей гранулярный матрикс, в центре которого располагается сердцевина, или нуклеоид (ничего не имеющий общего с нуклеоидом бактерий и вобще к ядерным структурам не относящийся).
  В зоне сердцевины часто, особенно в пероксисомах печеночных клеток, видны кристаллоподобные структуры, состоящие из регулярно упакованных фибрилл или трубочек. Изолированные сердцевины пероксисом содержат фермент уратоксидазу (рис. 196, 207б).
  Пероксисомы обнаружены у простейших (амебы, тетрахимена), у низших грибов (дрожжи), у высших растений в некоторых эмбриональных тканях (эндосперм) и в зеленых частях, способных к фотореспирации, у высших позвоночных животных они обнаруживаются главным образом в печени и почках. В печени крыс на клетку число пероксисом колеблется от 70 до 100.
  Пероксисомы часто локализуются вблизи мембран ЭР. У зеленых растений пероксисомы часто находятся в тесном контакте с митохондриями и пластидами.
  Впервые пероксисомы были выделены из печени и почек. Во фракциях пероксисом обнаруживается ферменты, связанные с метаболизмом перекиси водорода. Это ферменты (оксидазы, уратоксидаза, оксидаза d-аминокислот) окислительного дезаминирования аминокислот, при работе которых образуется перекись водорода (Н2О2 ) и каталаза, разрушающая ее. В пероксисомах печени каталаза составляет до 40 % всех белков и локализована в матриксе. Так как Н2О2 является токсическим веществом для клеток, то каталаза пероксисом может играть важную защитную роль. Пероксисомы цыплят и лягушек кроме уратоксидазы содержат ряд ферментов катаболизма пуринов.
  У животных и некоторых растений (проростки клещевины) пероксисомы играют важную роль при превращении жиров в углеводы. Так, в клетках эндосперма клевещины в пероксисомах (глиоксисомах) содержатся ферменты глиоксалатного цикла.
  Пероксисомы не содержат никаких нуклеиновых кислот и все белки, из которых они состоят, кодируются ядерными генами, но их относят к саморепродуцирующимся органеллам. В пероксидах происходит накопление специфических белков, которые синтезируются в цитозоле, и имеют свои сигнальные участки. В мембране пероксисом есть рецепторный белок, который узнает транспортируемые белки. Белки мембран пероксисом, также как и липиды приходят из цитозоля. Такое накопление содержимого и рост мембраны приводят к общему росту пероксисомы, которая затем с помощью неизвестного пока механизма делится на две - самореплицируется.
  Секреция белков и образование мембран у бактерий
  В принципе рост плазматической мембраны и её производных у бактерий происходит тем же образом, что и образование мембран у эукариотических клеток.
  Как известно, синтез белков у бактерий осуществляется на 70s рибосомах, которые также, как и у клеток высших организмов, имеют двоякую локализацию. Большая часть рибосом бактериальных клеток образует полисомы в цитоплазме, около 25% рибосом связано с плазматической мембраной. Такие рибосомы участвуют как в синтезе белков мембраны, так и в синтезе экскретируемых белков. Многие бактериальные клетки получают питательные вещества за счет деградации полимеров около бактериальной поверхности. Для этого бактерии должны выделять гидролизирующие ферменты в окружающую среду. Это они делают намного проще, чем эукариотические клетки: часть их рибосом, локализованных на внутренней (цитоплазматической) поверхности плазматической мембраны, синтезирует белки, которые, подобно секреторным белкам, проходят через мембрану и оказываются вне клетки. Выделенные гидролазы застревают в компонентах муреиновой бактериальной стенки и там функционируют. На других рибосомах, связанных с мембранами, идет синтез белков для построения самой мембраны, подобно тому, что происходит в гранулярном ЭР эукариотических клеток. Так что в этом отношении бактерию можно уподобить вакуоли гранулярного ЭР, вывернутой наизнанку.
  На примере бактерий хорошо изучен путь синтеза липидных компонентов мембран. Так, было найдено, что синтез фосфоэтидилэтаноламина происходит с помощью ферментов, являющихся интегральными белками плазматической мембраны, активные участки которых находятся на цитоплазматической стороне мембраны. Синтезированные здесь липиды встраиваются во внутренний липидный слой. Оказалось, что новосинтезированные липиды довольно быстро обнаруживаются и во внешнем слое мембраны за счет работы переносчиков - флиппаз.
  Часть V. Цитоплазма: системы энергообеспечения клеток
  Для осуществления любых клеточных функций необходимы затраты энергии. Живые организмы получают её, или используя внешние источники, например за счет энергии Солнца, или же используя энергию переноса электронов при окислении различных субстратов. В обоих случаях клетками синтезируются молекулы АТФ (аденозинтрифосфат), некая разменная "топливная" единица, обладающая высокоэнергетическими фосфатными связями, при разрушении которых выделяемая энергия может тратиться на любые клеточные функции: на активный транспорт веществ, на синтетические процессы, на механическую работу и т.д. (рис. 197). В клетках животных синтез АТФ осуществляется специальными органеллами, митохондриями, в растительных клетках кроме митохондрий в энергообеспечении огромную роль играют хлоропласты, один из видов пластид. Эти два органоида имеют общий сходный план строения, и выполняют сходные энергетические функции. Митохондрии и пластиды - двумембранные органоиды эукариотических клеток.
  Общим в их строении является то, что они отделены от цитоплазмы (гиалоплазмы) двумя мембранами - внешней и внутренней. Поэтому у митохондрий и пластид различают две полости или пространства: одну между внешней и внутренней мембранами (межмебранные) и другую, основную (матрикс), ограниченную внутренней мембраной. Другой общей чертой в их строении является то, что внутренняя мембрана образует складки, мешки, гребни, глубокие впячивания, направленные внутрь матрикса. На таких мембранных гребнях и впячиваниях локализуются активные метаболические центры этих органелл - полиферментные комплексы, определяющие выполнение основных физиологических функций (окислительное фосфорилирование для митохондрий, фотофосфорилирование для хлоропластов). В матриксе и тех, и других располагаются элементы авторепродукции этих клеточных мембранных органелл и локализованы ферменты некоторых метаболических процессов. Система авторепродукции двумембранных органелл представлена ДНК, РНК и рибосомами, которые могут определять часть генетических, автономных свойств этих структур.
  Главными функциональными нагрузками пластид и митохондрий являются процессы энергетического характера, приводящие к синтезу специфических молекул аденозинтрифосфата (АТФ), являющихся донорами энергии для любых клеточных процессов.
  В митохондриях, хлоропластах, так же как в бактериях, АТФ синтезируется одним и тем же способом: с помощью энергии, отдаваемой электронами при продвижении их по электроннотранспортной цепи белков внутренний мембраны, происходит перенос, "перекачка" протонов с внутренней стороны мембраны на внешнюю. Вследствие этого возникает электрохимический протонный градиент, энергия которого с помощью других белков используется для синтеза АТФ.
  В хлоропластах растений, кроме того, при использовании энергии АТФ, образованной в результате фосфорилирования, происходит важнейший биологический процесс - связывание СО2 и синтез углеводов.
  Глава 18. Митохондрии - строение и функции
  Митохондрии как органеллы синтеза АТФ характерны, за малым исключением, для всех эукариотических клеток как аутотрофных (фотосинтезирующие растения), так и гетеротрофных (животные, грибы) организмов. Их основная функция связана с окислением органических соединений и использовании освобождающейся при распаде этих соединений энергии в синтезе молекул АТФ. Поэтому митохондрии часто называют энергетическими станциями клетки.
  Общая морфология
  Митохондрии или хондриосомы (от греч. mitos- нить, chondrion- зернышко, soma- тельце) представляют собой гранулярные или нитевидные органеллы, присутствующие в цитоплазме простейших, растений и животных (рис. 198). Митохондрии можно наблюдать в живых клетках, так как они обладают достаточно высокой плотностью. В живых клетках митохондрии могут двигаться, перемещаться, сливаться друг с другом. Особенно хорошо митохондрии выявляются на препаратах, окрашенных различными способами после осмиевой фиксации, которая хорошо стабилизирует липиды. Наиболее широко распространен метод окраски по Альтману, который описал эти клеточные органеллы в конце позапрошлого века, называя их "биобластами".
  Размеры митохондрий очень непостоянны у разных видов, так же как изменчива их форма (рис. 199). Все же у большинства клеток толщина этих структур относительно постоянна (около 0,5 мкм), а длина колеблется, достигая у нитчатых форм до 7-60 мкм. Надо сказать, что изучение величины митохондрий - не простое дело. В световом микроскопе на окрашенных препаратах не всегда можно проследить за реальными размерами митохондрий (рис. 200, 201а). Изучая митохондрии в электронном микроскопе на ультратонких срезах, трудно решить вопрос об истинной длине митохондрий, так как на срез попадает только незначительный объем данной митохондрии. Более того, на срезе одна извитая митохондрия может быть представлена несколькими сечениями (3-5), и только пространственная трехмерная реконструкция, построенная на изучении серийных срезов, может решить вопрос, имеем ли мы дело с 3-6 отдельными митохондриями или же с одной изогнутой или разветвленной. Выделенные митохондрии обычно повреждаются и фрагментируются, что также ограничивает использование этого метода для решения вопроса о величине и числе митохондрий.
  В последнее время вопрос о величине и числе митохондрий занимает многих исследователей в связи с тем, что на ряде объектов показано, что размеры и число митохондрий, которые видны на ультратонких срезах, не соответствуют реальности. Так, в клетках дрожжей на срезах выявляется 5-7 сечений митохондрий; можно высчитать, что это число соответствует нескольким десяткам митохондрий. Однако при использовании высоковольтной электронной микроскопии, позволяющей исследовать объекты толщиной до нескольких микрон, было обнаружено, что в клетках дрожжей есть всего лишь несколько (1-3) сильно разветвленных митохондрий (рис. 202). Есть данные, что число митохондрий и для других клеток нужно считать завышенным из-за сложности структуры разветвленных митохондрий. Более того, появились представления о том, что в одноклеточных организмах есть всего одна митохондрия, но сильно разветвленная. Так, у трипанозм в клетке присутствует одна гигантская митохондрия, имеющая сложную разветвленную форму.
  Гигиантские одиночные митохондрии были описаны для одноклеточных зеленых водорослей (Polytomella, Engiena, Chlorella) (рис. 203). Длинные ветвящиеся митохондрии были описаны в клетках культуры ткани млекопитающих, в клетках многих растений как в нормальных, так и в анаэробных условиях. В последнее время стал широко применяться для изучения свойств митохондрий флуорохром родамин. Этот краситель обладает способностью люминисцировать в фиолетовом свете, если он связывается с мембранами активных митохондрий. При этом в люминисцентном микроскопе видна единая митохондриальнвя система - митохондриальный ретикулум (рис. 200, 201а).
  Обычные же подсчеты показывают, что на печеночную клетку приходится около 200 митохондрий. Это составляет более 20% от общего объема цитоплазмы и около 30-35% от общего количества белка в клетке. Площадь поверхности всех митохондрий печеночной клетки в 4-5 раз больше поверхности ее плазматической мембраны. Больше всего митохондрий в ооцитах (около 300000) и у гигантской амебы Chaos chaos (до 500000).
  В клетках зеленых растений число митохондрий меньше, чем в клетках животных, так как часть их функций могут выполнять хлоропласты.
  В спермиях часто присутствуют гигантские митохондрии, спирально закрученные вокруг осевой части жгутика. Отсутствуют митохондрии у кишечных энтамеб, живущих в условиях анаэробиоза, и у некоторых других паразитических простейших.
  Локализация митохондрии в клетках может быть различной. Часто их расположение обусловлено топографией цитоплазматических структур и включений. Так, в дифференцированных клетках растений митохондрии большей частью расположены в периферических участках цитоплазмы, отодвинутых к плазматической мембране центральной вакуолью. В мало дифференцированных клетках меристемы растений митохондрии располагаются более или менее равномерно. В клетках эпителия почечных канальцев митохондрии ориентированы вдоль продольной оси клетки. Это связано с тем, что они располагаются между глубокими впячиваниями плазматической мембраны в базальной области клеток (рис. 204).
  Обычно митохондрии скапливаются вблизи тех участков цитоплазмы, где возникает потребность в АТФ, образующейся в митохондриях. Так, в скелетных мышцах митохондрии находятся вблизи миофибрилл. В сперматозоидах митохондрии образуют спиральный футляр вокруг оси жгутика; вероятно, это связано с необходимостью использования АТФ для движения хвоста сперматозоида. Аналогичным образом у простейших и в других клетках, снабженных ресничками, митохондрии локализуются непосредственно под клеточной мембраной у основания ресничек, для работы которых необходим АТФ. В аксонах нервных клеток митохондрии располагаются около синапсов, где происходит процесс передачи нервного импульса. В секреторных клетках, которые синтезируют большие количества белков, митохондрии тесно связаны с зонами эргастоплазмы; вероятно, они поставляют АТФ для активации аминокислот и синтеза белка на рибосомах.
  Ультраструктура митохондрий.
  Митохондрии независимо от их величины или формы имеют универсальное строение, их ультраструктура однообразна. Митохондрии ограничены двумя мембранами (рис. 205). Наружняя митохондриальная мембрана отделяет ее от гиалоплазмы. Обычно она имеет ровные контуры, не образует впячиваний или складок. На нее приходится около 7% от площади всех клеточных мембран. Ее толщина около 7 нм, она не бывает связана ни с какими другими мембранами цитоплазмы и замкнута сама на себя, так что представляет собой мембранный мешок. Наружнюю мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внутренняя мембрана (толщиной около 7 нм) ограничивает собственно внутреннее содержимое митохондрии, ее матрикс или митоплазму. Характерной чертой внутренней мембраны митохондрий является их способность образовывать многочисленные впячивания внутрь митохондрий. Такие впячивания чаще всего имеют вид плоских гребней, или крист (рис. 206, 207а).
  Общая поверхность внутренней мембраны митохондрии в печеночной клетке составляет примерно треть поверхности всех клеточных мембран. Митохондрии клеток сердечной мышцы содержат втрое больше крист, чем печеночные митохондрии. Это может отражать различия в функциональных нагрузках митохондрий разных клеток. Расстояние между мембранами в кристе составляет около 10-20 нм. На срезах связь мембраны крист с внутренней мембраной прослеживается очень отчетливо, но мест таких мембранных переходов немного. Это объясняется тем, что связь между мембранами осуществляется через узкую шейку или стебелек.
  Митохондриальные кристы, отходящие от внутренней мембраны и простирающиеся в сторону матрикса, обычно не полностью перегораживают полость митохондрии, не нарушают непрерывности заполняющего ее матрикса.
  Ориентация крист по отношению к длинной оси митохондрии различна для разных клеток. Так, может быть перпендикулярная ориентация (клетки печени, почек) крист; в некоторых клетках (сердечная мышца) наблюдается продольное расположение крист. Часто кристы могут ветвиться или образовывать пальцевидные отростки, изгибаться и не иметь выраженной ориентации (рис. 208). У простейших, одноклеточных водорослей, в некоторых клетках высших растений и животных выросты внутренней мембраны имеют вид трубок (трубчатые кристы).
  Матрикс митохондрий имеет тонкозернистое гомогенное строение, в нем иногда выявляются тонкие собранные в клубок нити (около 2-3 нм) и гранулы около 15-20нм. Теперь стало известно, что нити матрикса митохондрий представляют собой молекулы ДНК в составе митохондриального нуклеоида, а мелкие гранулы - митохондриальные рибосомы. Кроме того, в матриксе встречаются крупные (20-40 нм) плотные гранулы, это - места отложения солей магния и кальция.
  Функции митохондрий
  Митохондрии осуществляют синтез АТФ, происходящий в результате процессов окисления органических субстратов и фосфорилирования АДФ. В клетках процессы окисления и выделения энергии, освобождающиеся в результате этого процесса, проходят в несколько взаимосвязанных этапов. При этом в качестве начальных субстратов используются различные углеводы, жирные кислоты, аминокислоты (рис.). Первые этапы окисления приводят кроме образования АТФ к появлению промежуточных продуктов, конечное окисление которых в митохондриях дает возможность клетке использовать этот процесс для синтеза основного количества АТФ.
  Начальные этапы окисления углеводов происходят в гиалоплазме и не требуют участия кислорода. Поэтому они называются анаэробным окислением, или гликолизом. Главным субстратом окисления при анаэробном получении энергии служат гексозы и в первую очередь глюкоза; некоторые бактерии обладают свойством извлекать энергию, окисляяя пентозы, жирные кислоты или аминокислоты. В глюкозе количество потенциальной энергии, заключенной в связях между атомами С, Н и О, составляет около 680 ккал на 1 моль (т.е. на 180 г глюкозы); эта энергия освобождается при полном окислении глюкозы согласно следующей реакции:
  С6Н12О6 + 6О2==> 6Н2О + 6СО2 + 680 ккал
  В живой клетке это огромное количество энергии не освобождается одновременно, как при горении в пламени. Освобождение энергии идет в виде ступенчатого процесса, управляемого целым рядом окислительных ферментов, и не связано с переходом энергии химической связи в тепло, как при горении, а с переходом ее в макроэнергетическую связь в молекуле АТФ, которая синтезируется при использовании освобождающейся энергии из АДФ и фосфата.
  В процессе гликолиза происходит неполное окисление субстрата. В результате гликолиза глюкоза распадается до триоз, при этом тратятся 2 молекулы АТФ и синтезируются 4 молекулы АТФ. Так что в конечном результате клетка "зарабатывает" всего 2 молекулы АТФ. В энергетическом отношении этот процесс малоэффективен, поэтому из 680 ккал, заключающихся в связях 1 моля глюкозы, освобождается менее 10% энергии. Несмотря на низкий энергетический выход, анаэробное окисление, гликолиз, широко используется в живой природе. Он является основным поставляющим энергию процессом для многих микроорганизмов, некоторых кишечных паразитических анаэробных простейших, для клеток высших организмов на ранних стадиях эмбрионального развития, для многих опухолевых клеток, для клеток культуры ткани и др. Эритроциты млекопитающих, например, получают всю необходимую им энергию за счет гликолиза, так как у них нет митохондрий.
  Образовавшиеся в результате гликолиза триозы, и в первую очередь пировиноградная кислота, вовлекаются в дальнейшее окисление, происходящее уже в самих митохондриях. При этом происходит использование энергии расщепления всех химических связей, что приводит к выделению СО2, к потреблению кислорода и синтезу большого количества АТФ. Эти процессы связаны с окислительным циклом трикарбоновых кислот и с дыхательной цепью переноса электронов, где происходит фосфорилирование АДФ и синтез клеточного "топлива", молекул АТФ (рис. 209).
  В цикле трикарбоновых кислот (цикл Кребса, или цикл лимонной кислоты) образовавшийся в результате гликолиза пируват сначала теряет молекулу СО2 и, окисляясь до ацетата (двууглеродное соединение), соединяется с коферментом А. Затем ацетилкоэнзим А, соединяясь с оксалацетатом (четырехуглеродное соединение), образует шестиуглеродный цитрат (лимоную кислоту). Затем происходит цикл окисления этого шестиуглеродного соединения до четырехуглеродного оксалацетата, снова связывание с ацетилкоэнзимом А, и затем цикл повторяется. При этом окислении выделяются две молекулы СО2, а электроны, освободившиеся при окислении, переносятся на акцепторные молекулы коферментов (NAD-никотинамидадениндинуклеотид), которые вовлекают их далее в цепь переноса электронов. Следовательно, в цикле трикарбоновых кислот нет самого синтеза АТФ, а идет окисление молекул, перенос электронов на акцепторы и выделение СО2. Все описанные выше события внутри митохондрий происходят в их матриксе.
  Выделенные митохондрии обладают способностью осуществлять окисление пирувата до СО2 и способны к синтезу АТФ. Если взвесь митохондрий подвергнуть воздействию ультразвука, то после разрыва митохондриальных мембран компоненты матрикса освобождаются и переходят в среду выделения. После такого разрушения можно осадить мембраны митохондрий и анализировать их функциональные активности.
  Было обнаружено, что во фракции, свободной от мембран, представляющей собой компоненты матрикса, обнаруживаются ферменты, участвующие в цикле трикарбоновых кислот. Следовательно, в матриксе локализованы ферменты этого цикла, которые находятся в свободном, не связанном состоянии с митохондриальными мембранами, за исключением сукцинатдегидрогеназы. Кроме того, в состав матрикса входят ферменты окисления жирных кислот; основной продукт окисления жирных кислот - ацетилкоэнзим ? - тоже в матриксе поступает в цикл трикарбоновых кислот, в котором он подвергается дальнейшему окислению до СО2 и Н2О В матриксе митохондрий происходит также окисление некоторых аминокислот, поступающих в цикл трикарбоновых кислот.
  Остальные события, связанные с дальнейшим переносом электронов и синтезом АТФ связаны с внутренней митохондриальной мембраной, с кристами митохондрий.
  Освободившиеся в процессе окисления в цикле трикарбоновых кислот электроны, акцептированные на коферментах, переносятся затем в дыхательную цепь (цепь переноса электронов), где они соединяются с молекулярным кислородом, образуя молекулы воды.
  Дыхательная цепь представляет собой ряд белковых комплексов, встроенных во внутреннюю митохондриальную мембрану (рис. 210). Существуют три главных ферментных комплекса. Первый, NADH-дегидрогеназный комплекс принимает электроны от NADH и переносит их во второй комплекс, комплекс в-С1, который в свою очередь, переносит их на цитохромоксидазный комплекс, а он их передает на кислород, в результате чего образуется вода. На этом окисление заканчивается.
  Как и полагается, окисление исходного субстрата привело к выделению СО2 и воды, но при этом не выделилась тепловая энергия, как при горении, а образовались молекулы АТФ. Они были синтезированы другой группой белков, не связанных прямо с окислением. Было найдено, что во внутренних митохондриальных мембранах на поверхности мембран, смотрящих в матрикс, располагаются крупные белковые комплексы, ферменты, АТФ-синтетазы. В электронном микроскопе во фракции внутренних митохондриальных частиц видны так называемые "грибовидные" тельца сплошь выстилающие поверхность мембран, смотрящую в матрикс. Эти тельца имеют как бы ножку и головку. Диаметром 8-9 нм. Было обнаружено, что эти тельца представляют собой белковый комплекс, состоящий из 9 субъединиц - АТФ-синтетазу. Следовательно, во внутренних мембранах митохондрий локализованы ферменты как окислительной цепи, так и ферменты синтеза АТФ (рис. 201б).
  Дыхательная цепь - это главная система превращения энергии в митохондриях. Здесь происходит последовательное окисление и восстановление элементов дыхательной цепи, в результате чего высвобождается небольшими порциями энергия. За счет этой энергии в трех точках цепи из АДФ и фосфата образуется АТФ. Поэтому говорят, что окисление (перенос электронов) сопряжено с фосфорилированием (АДФ + Фн >АТФ, т.е. происходит процесс окислительного фосфорилирования.
  В результате многократной оборачиваемости субстратов в цикле Кребса происходит полное окисление поступивших продуктов первичного гликолитического окисления, и затем в цепи окислительного фосфорилирования происходит максимальное использование освободившейся при окислении энергии для синтеза АТФ.
  Было высказано предположение, что выделяющаяся при транспорте электронов энергия запасается в виде градиента протонов на мембране. При этом на внешней поверхности внутренней мембраны митохондрий возникает повышенная концентрация положительно заряженных ионов водорода. Возникший при этом протонный градиент является движущей силой в синтезе АТФ (рис. 211).
  Это предположение стало затем теорией, хемиосмотической теорией сопряжения окисления субстратов с синтезом АТФ. Как оказалось, при переносе электронов в митохондриальной мембране каждый комплекс дыхательной цепи направляет свободную энергию окисление на перемещение протонов (положительных зарядов) через мембрану, из матрикса в межмембранное пространство, что приводит к образованию разности потенциалов на мембране: положительные заряды преобладают в межмембранном пространстве, а отрицательные - со стороны матрикса митохондрий. При достижении определенной разности потенциалов (220 мВ) белковый комплекс АТФ-синтетазы начинает транспортировать протоны обратно в матрикс, при этом превращает одну форму энергии в другую: образует АТФ из АДФ и неорганического фосфата. Так происходит сопряжение окислительных процессов с синтетическим, с фосфорилированием АДФ. Пока происходит окисление субстратов, пока происходит перекачка протонов через внутреннюю митохондриальную мембрану - идет сопряженный с этим синтез АТФ, т.е. происходит окислительное фосфорилирование.
  Эти два процесса могут быть разобщены. Можно снять разность потенциалов на митохондриальной мембране, или механически ее нарушить, или с помощью химических соединений (например, динитрофенола) сделать в ней диффузионные каналы. При этом будет продолжаться перенос электронов, будет продолжаться окисление субстрата, но синтеза АТФ уже происходить не будет. В этом случае энергия, освобождающаяся при окислении будет переходить в тепловую энергию.
 
  Окислительное фосфорилирование у бактерий
  У прокариотических клеток, способных к окислительному фосфорилированию, элементы цикла трикарбоновых кислот локализованы прямо в цитоплазме, а ферменты дыхательной цепи и фосфорилирования связаны с клеточной, плазматической мембраной. Это было вначале показано цитохимическими методами. Так, фермент сукцинатдегидрогеназа связан с плазматической мембраной и с ее выпячиваниями, выступающими внутрь цитоплазмы, с так называемыми мезосомами (рис. 212). Надо отметить, что такие бактериальные мезосомы могут быть связаны не только с процессами аэробного дыхания, но и у некоторых видов участвовать в делении клеток, в процессе распределения ДНК по новым клеткам, в образовании клеточной стенки и т.д. На плазматической мембране в мезосомах некоторых бактерий локализуются также факторы сопряжения окисления и синтеза АТФ. В электронном микроскопе во фракциях плазматических мембран бактерий обнаружены сферические частицы, аналогичные тем, которые были найдены в митохондриях эукариотических клеток. Таким образом, у бактериальных клеток, способных к окислительному фосфорилированию, плазматическая мембрана выполняет роль, аналогичную внутренней мембране митохондрий эукариотических клеток.
  Увеличение числа митохондрий
  Так же, как и другие органеллы цитоплазмы, митохондрии могут увеличиваться в числе, что особенно заметно при делении клеток или при увеличении функциональной нагрузки клетки, более того, происходит постоянное обновление митохондрий. Так, в печени средняя продолжительность жизни митохондрий составляет около 10 дней. Поэтому закономерно возникает вопрос, каким образом происходит это увеличение числа митохондрий, за счет каких процессов и каких структур образуются новые митохондрии.
  Основная масса экспериментальных данных говорит о том, что увеличение числа митохондрий происходит путем роста и деления предшествующих митохондрий. Это предположение было впервые высказано Альтманом (1893), описавшим митохондрии под термином "биобласты". Позднее с помощью цейтраферной киносъемки удалось наблюдать прижизненно деление, фрагментацию длинных митохондрий на более короткие. Особенно отчетливо виден этот процесс при делении клеток некоторых одноклеточных водорослей и низших грибов, у которых деление митохондрий скоординировано с клеточным делением. В электронный микроскоп часто во многих клетках можно видеть деление митохондрий путем образования перетяжки (рис. 213), например в клетках печени (хотя без доказательств динамичности этого процесса такие наблюдения мало убедительны). Внешне все эти картины очень напоминают бинарный способ деления бактерий.
  Реальность увеличения числа митохондрий путем деления были доказаны при изучении поведения митохондрий в живых клетках культуры ткани. Было обнаружено , что в течение клеточного цикла митохондрии могут вырастать до нескольких мкм, а затем фрагментироваться, делиться на более мелкие тельца.
  Кроме того, митохондрии могут сливаться друг с другом. Так, в культуре клеток эндотелия сердца головастика ксенопуса наблюдали до 40 случаев слияния и деления митохондрий за 1 час. В клетках культуры почек эмбрионов наблюдали рост и ветвление митохондрий в S-периоде клеточного цикла. Однако уже в G2- периоде преобладали в числе мелкие митохондрии, образовавшиеся за счет деления при фрагментации длинных митохондрий.
  Таким образом, размножение митохондрий идет по принципу: omnis mitochondrion e mitochondrion.
  Интересны наблюдения за судьбой митохондрий в дрожжевых клетках. В аэробных условиях дрожжевые клетки имеют типичные митохондрии с четко выраженными кристами. При переносе клеток в анаэробные условия (например, при их пересеве или при перемещении в атмосферу азота) типичные митохондрии в их цитоплазме не обнаруживаются, и вместо них видны мелкие мембранные пузырьки. Оказалось, что в анаэробных условиях дрожжевые клетки не содержат полную дыхательную цепь (отсутствуют цитохрому b и a). При аэрации культуры наблюдается быстрая индукция биосинтеза дыхательных ферментов, резкое повышение потребления кислорода, а в цитоплазме появляются нормальные митохондрии. Эти наблюдения привели к представлению о том, что у дрожжей в анаэробных условиях в цитоплазме существуют промитохондриальные структуры с редуцированной системой окисления. Такие промитохондрии при переносе клеток в условия аэробной среды начинают перестраиваться, происходит включение в их мембраны элементов полной цепи окисления и фосфорилирования, что сопровождается изменением их морфологии. Так, из примитивных, неактивных промитохондрий путем их достройки и роста образуются обычные функционирующие митохондрии.
  Вероятно, сходные процессы протекают и при делении митохондрий: происходит увеличение массы митохондриальных мембран со всеми специфическими компонентами за счет синтеза и включения в них отдельных белков - ферментов и липидов, нарастание массы белков матрикса, а затем происходит деление как бы удвоившейся или многократно увеличившейся структуры.
  Эти представления получают поддержку со стороны фактов, касающихся организации и состава митохондриального матрикса или митоплазмы, в которой обнаружены ДНК, разные типы РНК и рибосомы.
  Авторепродукция митохондрий
  Исследования последних лет привели к удивительным открытиям: двумембранные органеллы обладают полной системой авторепродукции. Эта система полная в том смысле, что в митохондриях и пластидах открыта ДНК, на которой в них синтезируются информационные, трансферные и рибосомные РНК и рибосомы, осуществляющие синтез митохондриальных и пластидных белков. Однако, как оказалось, эти системы, хотя и автономны, очень ограничены по своим возможностям.
  ДНК в митохондриях представлена циклическими молекулами, не образующими связь с гистонами, в этом отношении они напоминают бактериальные хромосомы. Размер их невелик, около 7 мкм, в одну циклическую молекулу митохондрий животных входит 16-19тыс. нуклеотидных пар ДНК. У человека митохондриальная ДНК содержит 16,5 тыс. н.п., она полностью расшифрована. Найдено, что митохондральная ДНК различных объектов очень однородна, отличие их заключается лишь в величине интронов и нетранскрибируемых участков. Все митохондриальные ДНК представлены множественными копиями, собранными в группы, кластеры. Так в одной митохондрии печени крысы может содержаться от 1 до 50 циклических молекул ДНК. Общее же количество митохондриальной ДНК на клетку составляет около одного процента. Синтез митохондриальных ДНК не связан с синтезом ДНК в ядре.
  Так же как и у бактерий митохондральная ДНК собрана в отдельную зону - нуклеоид, его размер составляет около 0, 4 мкм в диаметре. В длинных митохондриях может быть от 1 до 10 нуклеоидов. При делении длинной митохондрии от нее отделяется участок, содержащий нуклеоид (сходство с бинарным делением бактерий). Количество ДНК в отдельных нуклеоидах митохондрий может колебаться в 10 раз в зависимости от типа клеток.
  Прижизненно нуклеоиды митохондрий можно окрашиваться специальными флуорохромами. Оказалось, что в некоторых культурах в клетках от 6 до 60% митохондрий не имеют нуклеоида, что может объясняться тем, что деление этих органелл скорее связано с фрагментацией, а не с распределением нуклеоидов.
  Как уже говорилось, митохондрии могут как делиться, так и сливаться друг с другом. В обычной культуре клеток человека Hela все митохондрии содержат нуклеоиды. Однако одна из мутантных линий этой культуры содержала митохондрии, в которых нуклеоиды с помощью флуорохромов не выявлялись. Но если эти мутантные клетки слить с цитопластами клеток исходного типа, то во всех митохондриях нуклеоиды были обнаружены. Это говорит о том, что при слиянии митохондрий друг с другом может происходить обмен их внутренними компонентами.
  Важно подчеркнуть, что рРНК и рибосомы митохондрий резко отличны от таковых в цитоплазме. Если в цитоплазме обнаруживаются 80s рибосомы, то рибосомы митохондрий растительных клеток принадлежат к 70s рибосомам (состоят из 30s и 50s субъединиц, содержат 16s и 23s РНК, характерные для прокариотических клеток), а в митохондриях клеток животных обнаружены более мелкие рибосомы (около 50s).
  Рибосомные РНК митохондрий синтезируются на митохондриальных ДНК. В митоплазме на рибосомах идет синтез белков. Он прекращается, в отличие от синтеза на цитоплазматических рибосомах, при действии антибиотика хлорамфеникола, подавляющего синтез белка у бактерий.
  На митохондриальном геноме синтезируются и транспортные РНК, всего синтезируется 22 тРНК. Триплетный код митохондриальной синтетической системы отличен от такового, используемого в гиалоплазме. Несмотря на наличие казалось бы всех компонентов, необходимых для синтеза белков, небольшие молекулы митохондриальной ДНК не могут кодировать все митохондриальные белки, только лишь их небольшую часть. Так ДНК размером 15 тыс.н.п. может кодировать белки с суммарным молекулярным весом около 6х105. В это же время суммарный молекулярный вес белков частицы полного дыхательного ансамбля митохондрии достигает величины около 2х106. Если учесть, что кроме белков окислительного фосфорилирования в митохондрии входят ферменты цикла трикарбоновых кислот, ферменты синтеза ДНК и РНК, ферменты активации аминокислот и другие белки, то видно, что, для того чтобы кодировать эти многочисленные белки и рРНК и тРНК, количества генетической информации в короткой молекуле митохондриальной ДНК явно не хватает. Расшифровка нуклеотидной последовательности митохондриальной ДНК человека показала, что она кодирует всего лишь 2 рибосомные РНК, 22 трансферных РНК и всего 13 различных полипептидных цепей.
  В настоящее время имеются убедительные доказательства, что большая часть белков митохондрий находится под генетическим контролем со стороны клеточного ядра и синтезируется вне митохондрий. Так, в частности цитохром с, образуется в гиалоплазме, а из девяти полипептидных цепей в составе АТФ-синтетазы только одна синтезируется в матриксе митохондрий животных. Митохондриальная ДНК кодирует лишь немногие митохондриальные белки, которые локализованы в мембранах и представляют собой структурные белки, ответственные за правильную интеграцию в митохондриальных мембранах отдельных функциональных компонентов.
  Большинство митохондриальных белков синтезируется на рибосомах в цитозоле. Эти белки имеют специальные сигнальные последовательности, которые узнаются рецепторами на внешней мембране митохондрий. Эти белки могут встраиваться в них (см. аналогию с мембраной пероксисом), а затем перемещаться на внутреннюю мембрану. Этот перенос происходит в точках контакта наружной и внутренней мембран, где такой транспорт отмечен (рис. 214). Большинство липидов митохондрий так же синтезируются в цитоплазме.
  Все эти открытия, показывающие относительно независимое строение и функционирование системы белкового синтеза митохондрий, возродили гипотезу о эндосимбиотическом происхождении митохондрий, о том, что митохондрии представляют собой организмы типа бактерий, находящиеся в симбиозе с эукариотический клеткой.
  Хондриом
  Хондриом - это совокупность всех митохондрий в одной клетке. Оказалось, что такая совокупность может быть различной в зависимости от типа клеток. Так, во многих клетках хондриом представлен разрозненными многочисленными митохондриями, разбросанными довольно равномерно по всей цитоплазме, как, например, во многих недифференцированных клетках (рис. 215а). В других случаях отдельные митохондрии локализуются группами в местах интенсивной траты АТФ, как например, в клетках анализаторов сетчатки. В обоих этих случаях митохондрии функционируют поодиночке, их кооперативная работа, возможно, координируется какими-то сигналами из цитоплазмы. Однако существует и совершенно иной тип хондриома, когда вместо мелких одиночных разрозненных митохондрий в клетке располагается одна гигантская разветвленная митохондрия (рис. 215в). Такие митохондрии часто встречаются у одноклеточных зеленых водорослей (например у Chlorella). В этих случаях мы видим не отдельные митохондрии, а сложную митохондриальную систему, сеть или, как ей дали название, митохондриальный ретикулум (Reticulum miyochondriale). Каков биологический смысл появления такой гигантской разветвленной митохондриальной структуры, объединенной в одно целое своими внешними и внутренними мембранами? Согласно хемоосмотической теории, возникший на поверхности внутренней мембраны электрохимический протонный градиент равномерно распределяется по поверхности внутренней мембраны митохондрий, она эквипотенциальна в любой своей точке. Поэтому в любой точке поверхности внутренней мембраны такой разветвленной митохондрии может идти синтез АТФ, который будет поступать в любую точку цитоплазмы, где в этом есть необходимость. Т.е. такие разветвленные митохондрии могут представлять собой "электрический кабель".
  То, что это действительно имеет место, было доказано экспериментально. Были выбраны растущие в культуре ткани фибробласты, в цитоплазме которых имеются длинные нитчатые митохондрии, достигающие 60 мкм. В живых клетках их можно наблюдать с помощью флуорохрома этилродамина, который накапливается в матриксе только работающих, синтезирующих АТФ, митохондрий. Если снять разность потенциалов на внутренней мембране митохондрий, воздействуя на клетки динитрофенолом, то свечение этилродамина в митохондриях прекращается, параллельно падению синтеза АТФ. При этом гашение флуоресценции происходит во всех митохондрий. Это наблюдение показывает, что этилродамин, как протонный краситель, накапливается в матриксе митохондрий, только тогда, когда есть разность потенциалов на внутренней мембране митохондрий, т.е. когда происходит синтез АТФ.
  Но динитрофенол, встраиваясь в мембрану, создает "пробой" на всех митохондриях данной клетки. А как "выключить" одну митохондрию? Для этого используется лазерный или ультрафиолетовый микролуч, который можно точно направить на избранную экспериментатором митохондрию (рис. 216). Делается это с помощью специальной оптической системы, которая позволяет одновременно рассматривать объект (в данном случае живые клетки с окрашенными родамином митохондриями) и навести на избранную деталь тонкий пучок лазера или ультрафиолетового света. При облучении отдельной митохондрии происходит в ней гашение флуоресценции родамина из-за того, что в результате пробоя внутренней мембраны митохондрии разность потенциалов на ней падает, и родамин как бы вытекает из матрикса митохондрии. При этом соседние митохондрии не меняют своего свечения и продолжают синтез АТФ. Что же произойдет, если облучить небольшой участок разветвленной или же очень длинной митохондрии? В эксперименте одна из протяженных светящихся митохондрий фибробласта была локально поражена узким (0,5 мкм) микролучом оптического лазера. В результате этого вся длинная митохондрия потухла, в то время как соседние оставались без изменений (рис. 216б). Поражение микролучом участков свободной от митохондрии цитоплазмы не приводило к тушению митохондрий. Это говорит о том, что точечный пробой мембраны митохондрии приводит к снятию разности потенциалов не только в точке пробоя, но по всей длине митохондрии, которая представляет собой проводник с эквипотенциальной поверхностью. Следовательно, такие длинные нитчатые митохондрии фибробластов могут представлять собой электрические проводники, могущие передавать разность потенциалов на митохондриальных мембранах на большие расстояния и объединять удаленные участки цитоплазмы.
  Это значит, что и в случае гигантских разветвленных митохондрий в любой ее точке может на внутренней мембране накопиться потенциал, достаточный для того, чтобы начался синтез АТФ. С этих позиций митохондриальный ретикулум представляет собой как бы электрический проводник, кабель, соединяющий отдаленные точки такой системы. Митохондриальный ретикулум может оказаться очень полезным не только для мелких подвижных клеток, таких как хлорелла, но и для более крупных, там, где требуется кооперация и синхронизация в работе многих структурных единиц таких как, например, миофибриллы в скелетных мышцах.
  Как известно, скелетные мышцы состоят из массы мышечных волокон, симпластов, содержащих множество ядер. Длина таких мышечных волокон достигает 40 мкм, при толщине 0,1 мкм - это гигантская структура, содержащая великое множество миофибрилл, все из которых сокращаются одновременно, синхронно. Для такого сокращения к каждой единице сокращения, к каждому саркомеру миофибрилл, должно быть доставлено большое количество АТФ. На продольных ультратонких срезах скелетных мышц в электронном микроскопе видны многочисленные округлые мелкие сечения митохондрий, располагающихся в соседстве с саркомерами (рис. 217). Если же исследовать поперечные срезы мышечных волокон на уровне z-дисков, то видно, что мышечные митохондрии представляют собой не мелкие шарики или палочки, а как бы паукообразные структуры, отростки которых могут ветвиться и простираться на большие расстояния, иногда через весь поперечник мышечного волокна. При этом разветвления митохондрий окружают каждую миофибриллу в мышечном волокне, снабжая их АТФ, необходимого для мышечного сокращения. Следовательно, в плоскости z-диска митохондрии представлены типичным митохондриальным ретикулумом - единой митохондриальной системой. Такой пласт или этаж митохондриального ретикулума повторяется дважды на каждый саркомер, а все мышечное волокно имеет тысячи поперечно расположенных "поэтажных" пластов митохондриального ретикулума. Было обнаружено, что между "этажами" вдоль миофибрилл располагаются нитчатые митохондрии, соединяющие эти митохондриальные пласты. Тем самым создается трехмерная картина митохондриального ретикулума, проходящего через весь объем мышечного волокна (рис. 218).
  Здесь же было обнаружено, что как между ответвлениями митохондриального ретикулума, так и между ним и нитевидными продольными митохондриями существуют специальные межмитохондриальные соединения или контакты (ММК). Они образованы плотно прилегающими наружными митохондриальными мембранами контактирующих митохондрий, межмембранное пространство и мембраны в этой зоне имеют повышенную электронную плотность (рис. 219). Было сделано предположение, что через эти специальные образования может происходить функциональное объединение соседних митохондрий и митохондриальных ретикулумов в единую, кооперативную энергетическую систему. Все миофибриллы в мышечном волокне сокращаются синхронно по всей их длине, следовательно, и поступление АТФ на любом участке этой сложной машины тоже должно происходить синхронно, а это может происходить лишь в том случае, если огромное количество разветвленных митохондрий-проводников будет связано друг с другом клеммами-контактами (ММК).
  Доказать то, что ММК действительно участвуют в энергетическом объединении митохондрий друг с другом удалось на другом типе поперечно-исчерченнных мышц - на кардиомиоцитах, клетках сердечных мышц.
  Оказалось, что хондриом клеток сердечной мышцы не образует ветвящихся структур, а представлен множеством небольших вытянутых митохондрий, располагающихся без особого порядка между миофибриллами. Однако было найдено, что все соседние митохондрии стыкуются друг с другом с помощью митохондриальных контактов такого же типа, как в скелетной мышце, только их число очень велико: в среднем на одну митохондрию приходится 2-3 ММК, которые связывают митохондрии в единую цепь, где каждым звеном такой цепи (Streptio mitochondriale) является отдельная митохондрия (рис. 220). Такой тип хондриома также может служить целям синхронного сокращения всех саркомеров в миофибриллах кардиомиоцитов. Для такой кооперативной координации митохондрий должны служить множественные межмитохондриальные контакты (рис. 221, 222).
  Для доказательства этой гипотезы были использованы кардиомиоциты эмбрионов крысы в культуре ткани. Эти клетке имеют гетерогенные по размеру и форме митохондрии, расположенные между миофибриллами (рис. 223). В электронном микроскопе было обнаружено, что между некоторыми митохондриями были видны ММК, объединяющие их в небольшие группы - кластеры. В дальнейшем были проведены эксперименты, аналогичные тем, которые были сделаны на культуре фибробластов: митохондрии живых кардиомиоцитов окрашивали этилродамином, а затем одну из митохондрий в группе облучали лазерным микропучком. Облучение одиночных митохондрий приводило к быстрому их гашению. В одних случаях погасала только облученная митохондрия, в других - теряла люминесценцию вся группа митохондрий (рис. 224). Электронная микроскопия показала, что в последнем случае митохондрии в кластере были связаны друг с другом с помощью ММК. Следовательно, если одиночные митохондрии теряют этилродамин после лазерного укола вследствие электрического пробоя митохондриальной мембраны, то гашение группы митохондрий, связанных ММК, доказывает, что ММК, как клеммы, объединяют в единую цепь потенциалы одиночных митохондрий. По всей вероятности, области ММК проницаемы для протонов, которые могут передаваться с внутренней митохондриальной мембраны одной митохондрии на внутреннюю мембрану другой, и тем самым объединять митохондрии в единую энергетическую систему.
  Как оказалось, межмитохондриальные контакты (ММК), как обязательная структура сердечных клеток, встречаются не только у крыс. Они обнаружены в кардиомиоцитах как желудочков, так и предсердий всех позвоночных животных: млекопитающих, птиц, пресмыкающихся, амфибий и костистых рыб. Более того ММК были обнаружены (но в меньшем числе) в клетках сердца некоторых насекомых и моллюсков. Эти наблюдения говорят о чрезвычайно важной биологической роли этих структур, характеризующих митохондрии интенсивно и постоянно работающих клеток сердца.
  Было обнаружено, что количество ММК в кардиомиоцитах изменяется в зависимости от функциональной нагрузки на сердце. Так, если у крыс вызвать экспериментальное усиление работы сердечной мышцы, например при компенсаторной гипертрофии миокарда (частичная перевязка аорты), то количество ММК увеличивается почти вдвое. Увеличивается число ММК и при повышении физических нагрузок животных. Наоборот, при ограничении подвижности животных, находящихся в тесных камерах более 4-х месяцев (как в космическом корабле), при падении нагрузки на сердечную мышцу, происходит резкое сокращение числа ММК.
  Те же закономерности наблюдается и у других животных в естественных условиях их жизни. Так уменьшается число ММК у зимних спящих летучих мышей, у зимующих сурков. Резко возрастает число ММК в кардиомиоцитах летающих стрижей, по сравнению с их птенцами до вылета из гнезда. Из этих наблюдений можно сделать обобщение: чем выше функциональная нагрузка на кардиомиоциты, чем выше потребление энергии, тем большее количество ММК связывает отдельные митохондрии в единую кооперативную систему.
  На рис. 225 представлены варианты организации хондриома в различных клетках. Хондриом может иметь различную композицию в зависимости от энергетических потребностей клетки. В простейшем (и чаще встречающемся ) случае он может быть представлен множеством разрозненных небольших митохондрий, функционирующих независимо друг от друга и снабжающих АТФ небольшие участки цитоплазмы. В другом случае длинные и разветвленные митохондрии могут энергетически обеспечивать отдаленные друг от друга участки клетки. Вариантом такой протяженной системы может быть хондриом типа митохондриального ретикулума, который встречается как у одноклеточных, так и у многоклеточных организмов. Особенно сложно этот вид хондриома выражен в скелетных мышцах млекопитающих, где группы гигантских разветвленных митохондрий связаны друг с другом с помощью ММК. Вообще же наличие ММК характерно для хондриомов сократимых структур. Особенно обильно ММК представлены в клетках сердечных мышц, где они функционально связывают множественные отдельные митохондрии в единую разветвленную цепь.
  Глава 19. Пластиды
  Пластиды - это мембранные органоиды, встречающиеся у фотосинтезирующих эукариотических организмов (высшие растения, низшие водоросли, некоторые одноклеточные организмы). Подобно митохондриям, пластиды окружены двумя мембранами, в их матриксе имеется собственная геномная система, функции пластид связаны с энергообеспечением клетки, идущим на нужды фотосинтеза. У высших растений найден целый набор различных пластид (хлоропласт, лейкопласт, амилопласт, хромопласт), представляющих собой ряд взаимных превращений одного вида пластиды в другой. Основной структурой, которая осуществляет фотосинтетические процессы, является хлоропласт (рис. 226а).
  Хлоропласт
  Как уже указывалось, строение хлоропласта в принципе напоминает строение митохондрии. Обычно это структуры удлиненной формы с шириной 2-4 мкм и протяженностью 5-10 мкм. У зеленых водорослей встречаются гигантские хлоропласты (хроматофоры), достигающие длины 50 мкм. Количество хлоропластов в клетках разных растений не стандартно. Так, у зеленых водорослей может быть по одному хлоропласту на клетку. Обычно на клетку высших растений приходится в среднем 10-30 хлоропластов. Встречаются клетки с огромным количеством хлоропластов. Например, в гигантских клетках палисадной ткани махорки обнаружено около 1000 хлоропластов.
  Хлоропласты представляют собой структуры, ограниченные двумя мембранами - внутренней и внешней. Внешняя мембрана, как и внутренняя, имеет толщину около 7 мкм, они отделены друг от друга межмембранным пространством около 20-30 нм. Внутренняя мембрана хлоропластов отделяет строму пластиды, аналогичную матриксу митохондрий. В строме зрелого хлоропласта высших растений видны два типа внутренних мембран. Это - мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.
  Ламеллы стромы (толщиной около 20 мкм) представляют собой плоские полые мешки или же имеют вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости. Обычно ламеллы стромы внутри хлоропласта лежат параллельно друг другу и не образуют связей между собой.
  Кроме мембран стромы в хлоропластах обнаруживаются мембранные тилакоиды. Это плоские замкнутые мембранные мешки, имеющие форму диска. Величина межмембранного пространства у них также около 20-30 нм. Такие тилакоиды образуют стопки наподобие столбика монет, называемые гранами (рис. 227). Число тилакоидов на одну грану очень варьирует: от нескольких штук до 50 и более. Размер таких стопок может достигать 0,5 мкм, поэтому граны видны в некоторых объектах в световом микроскопе. Количество гран в хлоропластах высших растений может достигать 40-60. Тилакоиды в гране сближены друг с другом так, что внешние слои их мембран тесно соединяются; в месте соединения мембран тилакоидов образуется плотный слой толщиной около 2 нм. В состав граны кроме замкнутых камер тилакоидов обычно входят и участки ламелл, которые в местах контакта их мембран с мембранами тилакоидов тоже образуют плотные 2-нм слои. Ламеллы стромы, таким образом, как бы связывают между собой отдельные граны хлоропласта. Однако полости камер тилакоидов всезда замкнуты и не переходят в камеры межмембранного пространства ламелл стромы. Ламеллы стромы и мембраны тилакоидов образуются путем отделения от внутренней мембраны при начальных этапах развития пластид.
  В матриксе (строме) хлоропластов обнаруживаются молекулы ДНК, рибосомы; там же происходит первичное отложение запасного полисахарида, крахмала, в виде крахмальных зерен.
  Функции хлоропластов
  Хлоропласты - это структуры, в которых происходят фотосинтетические процессы, приводящие в конечном итоге к связыванию углекислоты, к выделению кислорода и синтезу сахаров.
  Характерным для хлоропластов является наличие в них пигментов, хлорофиллов, которые и придают окраску зеленым растениям. При помощи хлорофилла зеленые растения поглощают энергию солнечного света и превращают ее в химическую. Поглощение света с определенной длиной волны приводит к изменению в структуре молекулы хлорофилла, она переходит при этом в возбужденное, активированное состояние. Освобождающаяся энергия активированного хлорофилла через ряд промежуточных этапов передается определенным синтетическим процессам, приводящим к синтезу АТФ и к восстановлению акцептора электронов НАДФ (никотинамидадениндинуклеотид) до НАДФ-Н, которые тратятся на реакции связывания СО2 и синтез сахаров.
  Суммарная реакция фотосинтеза может быть выражена следующим образом:
  nСО2 + nН2О свет ?==> (СН2О) n + nО2 (I)
  хлорофилл
 
  Таким образом, главный итоговый процесс здесь - связывание двуокиси углерода с использование воды для образования различных углеводов и выделение кислорода. Молекулы кислорода, который выделяется в процессе фотосинтеза у растений, образуется за счет гидролиза молекулы воды. Следовательно, процесс фотосинтеза включает в себя процесс гидролиза воды, которая служит одним из источников электронов или атомов водорода. Биохимические исследования показали, что процесс фотосинтеза представляет собой сложную цепь событий, заключающую в себе две фазы: световую и темновую. Первая, протекающая только на свету, связана с поглощением света хлорофиллами и с проведением фотохимической реакции (реакция Хилла). Во второй фазе, которая может идти в темноте, происходит фиксация и восстановление СО2 , приводящие к синтезу углеводов.
  В результате световой фазы происходит фотофосфорилирование, синтез АТФ из АДФ и фосфата с использованием цепи переноса электронов, а также восстановление кофермента НАДФ (никотинамидадениндинуклеотидфосфат) в НАДФ-Н, происходящего при гидролизе и ионизации воды. В этой фазе фотосинтеза энергия солнечного света возбуждает электроны в молекулах хлорофилла, которые расположены в мембранах тилакоидов. Эти возбужденные электроны переносятся по компонентам окислительной цепи в тилакоидной мембране, подобно тому как электроны транспортируются по дыхательной цепи в мембране митохондрий. Энергия, освобождающаяся при таком переносе электронов, используется для перекачивания протонов через тилакоидную мембрану внутрь тилакоидов, что приводит к возрастанию разности потенциалов между стромой и пространством внутри тилакоида. Также как и в мембранах крист митохондрий в мембранах тилакоидов встроены молекулярные комплексы АТФ-синтетазы, которые начинают затем транспортировать протоны обратно в матрикс хлоропласта, или строму, и параллельно этому фосфорилировать АДФ, т.е. синтезировать АТФ (рис. 228, 229).
  Таким образом, в результате световой фазы происходит синтез АТФ и восстановление НАДФ, которые затем используются при восстановлении СО2, в синтезе углеводов уже в темновой фазе фотосинтеза.
  В темновой (независящей от потока фотонов) стадии фотосинтеза за счет восстановленного НАДФ и энергии АТФ происходит связывание атмосферного СО2, что приводит к образованию углеводов. Этот процесс фиксации СО2 и образования углеводов состоит из многих этапов, в которых участвует большое число ферментов (цикл Кальвина). Биохимическими исследованиями было показано, что ферменты, участвующие в темновых реакциях, содержатся в водорастворимой фракции хлоропластов, содержащей компоненты матрикса-стромы этих пластид.
  Процесс восстановления СО2 начинается с его присоединения к рибулозодифосфату, углеводу, состоящему из 5 атомов углерода с образованием короткоживущего С6-соединения, которое сразу распадается на два С3-соединения, на две молекулы глицерид-3-фосфата.
  Именно на этом этапе при карбоксилировании рибулозодифосфата и происходит связывание СО2. Дальнейшие реакции превращения глицерид-3-фосфата приводят к синтезу различных гексоз и пентоз, к регенерации рибулозодифосфата и к его новому вовлечению в цикл реакций связывания СО2. В конечном счете в хлоропласте из шести молекул СО2 образуется одна молекула гексозы, для этого процесса требуется 12 молекул НАДФ-Н и 18 молекул АТФ, поступающих из световых реакций фотосинтеза. Образовавшийся в результате темновой реакции фруктоза-6 -фосфат дает начало сахарам, полисахаридам (крахмал) и галактолипидам. В строме хлоропластов кроме того из части глицерид-3-фосфата образуются жирные кислоты, аминокислоты и крахмал. Синтез сахарозы завершается в цитоплазме.
  В строме хлоропластов происходит восстановление нитритов до аммиака, за счет энергии электронов, активированных светом; в растениях этот аммиак служит источником азота при синтезе аминокислот и нуклеотидов.
  Онтогенез и функциональные перестройки пластид
  Многих исследователей занимал вопрос о происхождении пластид и о путях их образования.
  Еще в конце позапрошлого столетия было найдено, что у нитчатой зеленой водоросли спирогиры деление клеток при вегетативном размножении сопровождается делением их хроматофора путем перетяжки. Подробно исследована судьба хлоропласта у зеленой водоросли хламидомонады (рис. 230). Оказалось, что при бесполом, вегетативном размножении сразу вслед за делением ядра наступает перешнуровка гигантского хроматофора на две части, каждая из которых попадает в одну из дочерних клеток, где дорастает до исходной величины. Такое же равное разделение хлоропласта происходит и при формировании зооспор. При образовании зиготы после слияния гамет, каждая из которых содержала хлоропласт, после объединения ядер хлоропласты сначала соединяются тонкой перемычкой, а затем их содержимое сливается в одну крупную пластиду.
  У высших растений также встречается деление зрелых хлоропластов, но очень редко. Увеличение числа хлоропластов и образование других форм пластид (лейкопластов и хромопластов) следует рассматривать как путь превращения структур-предшественников, пропластид. Весь же процесс развития различных пластид можно представить в виде монотропного (идущего в одном направлении) ряда смены форм:
 
  Пропластида ? лейкопласт ? хлоропласт ? хромопласт
  ?
  амилопласт???????????
  Многими исследованиями был установлен необратимый характер онтогенетических переходов пластид. У высших растений возникновение и развитие хлоропластов происходят через изменения пропластид (рис. 231).
  Пропластиды представляют собой мелкие (0,4-1 мкм) двумембранные пузырьки, не имеющие отличительных черт их внутреннего строения. Они отличаются от вакуолей цитоплазмы более плотным содержимым и наличием двух отграничивающих мембран, внешней и внутренней (наподобие промитохондриям у дрожжевых клеток). Внутренняя мембрана может давать небольшие складки или образовывать мелкие вакуоли. Пропластиды чаще всего встречаются в делящихся тканях растений (клетки меристемы корня, листьев, в точки роста стеблей и др.). По всей вероятности, увеличение их числа происходит путем деления или почкования, отделения от тела пропластиды мелких двумембранных пузырьков.
  Судьба таких пропластид будет зависеть от условий развития растений. При нормальном освещении пропластиды превращаются в хлоропласты. Сначала они растут, при этом происходит образование продольно расположенных мембранных складок от внутренней мембраны. Одни из них простираются по всей длине пластиды и формируют ламеллы стромы; другие образуют ламеллы тилакоидов, которые выстраиваются в виде стопки и образуют граны зрелых хлоропластов.
  Несколько иначе развитие пластид происходит в темноте. У этиолированных проростков происходит в начале увеличение объема пластид, этиопластов, но система внутренних мембран не строит ламеллярные структуры, а образует массу мелких пузырьков, которые скапливаютсяя в отдельные зоны и даже могут формировать сложные решетчатые структуры (проламеллярные тела). В мембранах этиопластов содержится протохлорофилл, предшественник хлорофилла желтого цвета. Под действие света из этиопластов образуются хлоропласты, протохлорофилл превращается в хлорофилл, происходит синтез новых мембран, фотосинтетических ферментов и компонентов цепи переноса электронов.
  При освещении клеток мембранные пузырьки и трубочки быстро реорганизуются, из них развивается полная система ламелл и тилакоидов, характерная для нормального хлоропласта.
  Лейкопласты отличаются от хлоропластов отсутствием развитой ламеллярной системы (рис. 226 б). Встречаются они в клетках запасающих тканей. Из-за их неопределенной морфологии лейкопласты трудно отличить от пропластид, а иногда и от митохондрий. Они, как и пропластиды, бедны ламеллами, но тем не менее способны к образованию под влиянием света нормальных тилакоидных структур и к приобретению зеленой окраски. В темноте лейкопласты могут накапливать в проламеллярных телах различные запасные вещества, а в строме лейкопластов откладываются зерна вторичного крахмала. Если в хлоропластах происходит отложение так называемого транзиторного крахмала, который присутствует здесь лишь во время ассимиляции СО2, то в лейкопластах может происходить истинное запасание крахмала. В некоторых тканях (эндосперм злаков, корневища и клубни) накопление крахмала в лейкопластах приводит к образованию амилопластов, сплошь заполненных гранулами запасного крахмала, расположенных в строме пластиды (рис. 226в).
  Другой формой пластид у высших растений является хромопласт, окрашивающийся обычно в желтый свет в результате накопления в нем каротиноидов (рис. 226г). Хромопласты образуются из хлоропластов и значительно реже их лейкопластов (например, в корне моркови). Процесс обесцвечивания и изменения хлоропластов легко наблюдать при развитии лепестков или при созревании плодов. При этом в пластидах могут накапливаться окрашенные в желтый цвет капельки (глобулы) или в них появляются тела в форме кристаллов. Эти процессы сопряжены с постепенным уменьшением числа мембран в пластиде, с исчезновением хлорофилла и крахмала. Процесс образования окрашенных глобул объясняется тем, что при разрушении ламелл хлоропластов выделяются липидные капли, в которых хорошо растворяются различные пигменты (например, каротиноиды). Таким образом, хромопласты представляют собой дегенерирующие формы пластид, подвернутые липофанерозу - распаду липопротедных комплексов.
  Фотосинтезирующие структуры низших эукариотических и
  прокариотических клеток
  Строение пластид у низших фотосинтезирующих растений (зеленые , бурые и красные водоросли) в общих чертах сходно с хлоропластами клеток высших растений. Их мембранные системы также содержат фоточувствительные пигменты. Хлоропласты зеленых и бурых водорослей (иногда их называют хроматофорами) имеют также внешнюю и внутреннюю мембраны; последняя образует плоские мешки, располагающиеся параллельными слоями, граны у этих форм не встречаются (рис. 232). У зеленых водорослей в состав хроматофора входят пиреноиды, представляющие собой окруженные мелкими вакуолями зону, вокруг которой происходит отложение крахмала ла (рис. 233).
  Форма хлоропластов у зеленых водорослей очень разнообразна - это или длинные спиральные ленты (Spirogira), сети (Oedogonium), или мелкие округлые, похожие на хлоропласты высших растений (рис. 234).
  Среди прокариотических организмов многие группы обладают фотосинтетическими аппаратами и имеют в связи с этим особое строение. Для фотосинтезирующих микроорганизмов (синезеленые водоросли и многие бактерии) характерно, что их фоточувствительные пигменты локализуются в плазматической мембране или в её выростах, направленных вглубь клетки.
  В мембранах синезеленых водорослей кроме хлорофилла находятся пигменты фикобилины. Фотосинтезирующие мембраны синезеленых водорослей образуют плоские мешки (ламеллы), которые располагаются параллельно друг над другом, иногда образуя стопки или спирали. Все эти мембранные структуры образуются за счет инвагинаций плазматической мембраны.
  У фотосинтезирующих бактерий (Chromatium) мембраны образуют мелкие пузырьки, число которых так велико, что они заполняют практически большую часть цитоплазмы. Можно видеть, как эти пузырьки образуются за счет впячивания и последующего роста плазматической мембраны. Эти мембранные пузырьки (их также называют хроматофорами) содержат фоточувствительный пигмент бактериохлорофилл, каратиноиды, компоненты фотосинтетической системы переноса электронов и фотофосфорилирования. Некоторые пурпурные бактерии содержат систему мембран, образующих правильные стопки, наподобие тилакоидов в гранах хлоропластов (рис. 235).
  Геном пластид
  Подобно митохондриям, хлоропласты имеют собственную генетическую систему, обеспечивающую синтез ряда белков внутри самих пластид. В матриксе хлоропластов обнаруживаются ДНК, разные РНК и рибосомы. Оказалось, что ДНК хлоропластов резко отличается от ДНК ядра. Она представлена циклическими молекулами длиной до 40-60 мкм, имеющими молекулярный вес 0,8-1,3х108 дальтон. В одном хлоропласте может быть множество копий ДНК. Так, в индивидуальном хлоропласте кукурузы присутствует 20-40 копий молекул ДНК. Длительность цикла и скорость репликации ядерной и хлоропластной ДНК, как было показано на клетках зеленых водорослей, не совпадают. ДНК хлоропластов не состоит в комплексе с гистонами. Все эти характеристики ДНК хлоропластов близки к характеристикам ДНК прокариотических клеток. Более того, сходство ДНК хлоропластов и бактерий подкрепляется еще и тем, что основные регуляторные последовательности транскрипции (промоторы, терминаторы) у них одинаковы. На ДНК хлоропластов синтезируются все виды РНК (информационная, трансферная, рибосомная). ДНК хлоропластов кодирует рРНК, входящую в состав рибосом этих пластид, которые относятся к прокариотическому 70S типу (содержат 16S и 23S рРНК). Рибосомы хлоропластов чувствительны к антибиотику хлорамфениколу, подавляющему синтез белка у прокариотических клеток.
  Так же как в случае хлоропластов мы вновь сталкиваемся с существованием особой системы синтеза белка, отличной от таковой в клетке.
  Эти открытия вновь пробудили интерес к теории симбиотического происхождения хлоропластов. Идея о том, что хлоропласты возникли за счет объединения клеток-гетеротрофов с прокариотическими синезелеными водорослями, высказанная на рубеже XIX и XX вв. (А.С. Фоминцин, К.С.Мережковский) вновь находит свое подтверждение. В пользу этой теории говорит удивительное сходство в строении хлоропластов и синезеленых водорослей, сходство с основными их функциональными особенностями, и в первую очередь со способностью к фотосинтетическим процессам.
  Известны многочисленные факты истинного эндосимбиоза синезеленых водорослей с клетками низших растений и простейших, где они функционируют и снабжают клетку-хозяина продуктами фотосинтеза. Оказалось, что выделенные хлоропласты могут также отбираться некоторыми клетками и использоваться ими как эндосимбионты. У многих беспозвоночных (коловратки, моллюски), питающихся высшими водорослями, которые они переваривают, интактные хлоропласты оказываются внутри клеток пищеварительных желез. Так, у некоторых растительноядных моллюсков в клетках найдены интактные хлоропласты с функционирующими фотосинтетическими системами, за активностью которых следили по включению С14О2.
  Как оказалось, хлоропласты могут быть введены в цитоплазму клеток культуры фибробластов мыши путем пиноцитоза. Однако они не подвергались атаке гидролаз. Такие клетки, включившие зеленые хлоропласты, могли делиться в течение пяти генераций, а хлоропласты при этом оставались интактными и проводили фотосинтетические реакции. Были предприняты попытки культивировать хлоропласты в искусственных средах: хлоропласты могли фотосинтезировать, в них шел синтез РНК, они оставались интактными 100 ч, у них даже в течение 24 ч наблюдались деления. Но затем происходило падение активности хлоропластов, и они погибали.
  Эти наблюдения и целый ряд биохимических работ показали, что те черты автономии, которыми обладают хлоропласты, еще недостаточны для длительного поддержания их функций и тем более для их воспроизведения.
  В последнее время удалось полностью расшифровать всю последовательность нуклеотидов в составе циклической молекулы ДНК хлоропластов высших растений. Эта ДНК может кодировать до 120 генов, среди них: гены 4 рибосомных РНК, 20 рибосомных белков хлоропластов, гены некоторых субъединиц РНК-полимеразы хлоропластов, несколько белков I и II фотосистем, 9 из 12 субъединиц АТФ-синтетазы, части белков комплексов цепи переноса электронов, одной из субъединиц рибулозодифосфат-карбоксилазы (ключевой фермент связывания СО2), 30 молекул тРНК и еще 40 пока неизвестных белков. Интересно, что сходный набор генов в ДНК хлоропластов обнаружен у таких далеко отстоящих представителей высших растений как табак и печеночный мох.
  Основная же масса белков хлоропластов контролируется ядерным геномом. Оказалось, что ряд важнейших белков, ферментов, а соответственно и метаболические процессы хлоропластов находятся под генетическим контролем ядра. Так, клеточное ядро контролирует отдельные этапы синтеза хлорофилла, каротиноидов, липидов, крахмала. Под ядерным контролем находятся многие энзимы темновой стадии фотосинтеза и другие ферменты, в том числе некоторые компоненты цепи транспорта электронов. Ядерные гены кодируют ДНК-полимеразу и аминоацил-тРНК-синтетазу хлоропластов. Под контролем ядерных генов находится большая часть рибосомных белков. Все эти данные заставляют говорить о хлоропластах, так же как и о митохондриях, как о структурах с ограниченной автономией.
  Транспорт белков из цитоплазмы в пластиды происходит в принципе сходно с таковым у митохондрий. Здесь также в местах сближения внешней и внутренней мембран хлоропласта располагаются каналообразующие интегральные белки, которые узнают сигнальные последовательности хлоропластных белков, синтезированных в цитоплазме, и транспортируют их в матрикс-строму. Из стромы импортируемые белки согласно дополнительным сигнальным последовательностям могут включаться в мембраны пластиды (тилакоиды, ламеллы стромы, внешняя и внутренняя мембраны) или локализоваться в строме, входя в состав рибосом, ферментных комплексов цикла Кальвина и др.
  Удивительное сходство структуры и энергетических процессов у бактерий и митохондрий, с одной стороны, и у синезеленых водорослей и хлоропластов - с другой, служит веским аргументом в пользу теории симбиотического происхождения этих органелл. Согласно этой теории, возникновение эукариотической клетки прошло через несколько этапов симбиоза с другими клетками. На первой стадии клетки типа анаэробных гетеротрофных бактерий включили в себя аэробные бактерии, превратившиеся в митохондрии. Параллельно этому в клетке-хозяине прокариотический генофор формируется в обособленное от цитоплазмы ядро. Так могли возникнуть гетеротрофные эукариотические клетки. Повторные эндосимбиотические взаимоотношения между первичными эукариотическими клетками и синезелеными водорослями привели к появлению в них структур типа хлоропластов, позволяющих клеткам осуществлять автосинтетические процессы и не зависеть от наличия органических субстратов (рис. 236). В процессе становления такой составной живой системы часть генетической информации митохондрий и пластид могла изменяться, перенестись в ядро. Так, например две трети из 60 рибосомных белков хлоропластов кодируется в ядре и синтезируются в цитоплазме, а потом встраивается в рибосомы хлоропластов, имеющие все свойства прокариотических рибосом. Такое перемещение большой части прокариотических генов в ядро привело к тому, что эти клеточные органеллы, сохранив часть былой автономии, попали под контроль клеточного ядра, определяющего в большей степени все главные клеточные функции.
  Часть VI. Цитоплазма: Опорно-двигательная система (цитоскелет)
  В предыдущих главах уже много и часто говорилось о движении: движутся хромосомы к полюсам клетки во время митоза, перемещаются вакуоли клеточных органелл, движется клеточная поверхность. Кроме того, в клетках растений и животных наблюдаются токи цитоплазмы (например, в растительных клетках или у амебы). Более того, отдельные клетки (свободноживущие одноклеточные организмы или специфические типы клеток в многоклеточных животных организмах) обладают способностью активно перемещаться, ползать (рис. 237). Некоторые клетки имеют специализированные структуры, реснички или жгутики, которые позволяют им или самым перемещаться, или перемещать окружающую их жидкость. Наконец, у многоклеточных животных организмов есть специализированные клетки, мышечная работа которых позволяет производить различные движения органов, отдельных его частей и всего организма. Было найдено, что в основе всех этих многочисленных двигательных реакций лежат общие молекулярные механизмы. Кроме того, было показано, что наличие каких-либо двигательных аппаратов должно сочетаться и структурно связываться с существованием опорных, каркасных или скелетных внутриклеточных образований. Поэтому можно говорить (описывать и изучать) об опорно-двигательной системе клеток.
  Само понятие о цитоскелете или скелетных компонентах цитоплазмы разных клеток было высказано Н.К.Кольцовым, выдающимся русским цитологом еще в начале ХХ века. К сожалению, они были забыты и только уже в конце 50-х годов с помощью электронного микроскопа эта скелетная система было переоткрыта.
  Огромный вклад в изучение цитоскелета внес метод иммунофлуоресценции, который помог разобраться в химии и динамике этого чрезвычайно важного компонента клетки. Цитоскелетные компоненты представлены нитевидными, неветвящимися белковыми комплексами или филаментами (тонкими нитями).
  Существуют три системы филаментов, различающихся как по химическому составу, так и по своей ультраструктуре, так и по функциональным свойствам. Самые тонкие нити - это микрофиламенты; их диаметр составляет около 8 нм и состоят они в основном из белка актина. Другую группу нитчатых структур составляют микротрубочки, которые имеют диаметр 25 нм и состоят в основном из белка тубулина, и, наконец, промежуточные филаменты с диметром около 10 нм (промежуточный по сравнению с 6 нм и 25 нм), образующиеся из разных, но родственных белков (рис. 238, 239).
  Все эти фибриллярные структуры могут участвовать в качестве составных частей в процессе физического перемещения клеточных компонентов или даже целых клеток, кроме того они же в ряде случаев выполняют сугубо каркасную скелетную роль. Элементы цитоскелета встречаются во всех без исключения эукариотических клетках; аналоги этих фибриллярных структур встречаются и у прокариот. Степень выраженности их в разных клетках может быть различной. Так, например, клетки эпидермиса кожи особенно богаты промежуточными филаментами, мышечные клетки - актиновыми микрофиламентами, особенно многих микротрубочек в пигментных клетках, меланоцитах, в отростках нервных клеток и т.д.
  Общими свойствами элементов цитоскелета является то, что это белковые, неветвящиеся фибриллярные полимеры, нестабильные, способные к полимеризации и деполимеризации. Такая нестабильность может приводить к некоторым вариантам клеточной подвижности, например, к изменению формы клетки. Некоторые компоненты цитоскелета при участии специальных дополнительных белков могут стабилизироваться или образовывать сложные фибриллярные ансамбли, и играть только каркасную роль. При взаимодействии с другими специальными белками-транслокаторами (или моторными белками) они могут участвовать в разнообразных клеточных движениях.
  По своим свойствам и функциям элементы цитоскелета можно разделить на две группы: только каркасные фибриллы - промежуточные филаменты, и опорно-двигательные - как, например, актиновые микрофиламенты, взаимодействующие с моторными белками - миозинами, и тубулиновые микротрубочки, взаимодействующие с моторными белками динеинами и кинезинами.
  Причем во второй группе фибрилл цитоскелета (микрофиламенты и микротрубочки) могут происходить два принципиально различных способа движения. Первый из них основан на способности основного белка микрофиламентов - актина и основного белка микротрубочек - тубулина к полимеризации и деполимеризации, что может при связи этих белков с плазматической мембраной вызывать ее морфологические изменения в виде образования выростов (псевдоподий и ламеллоподий) на краю клетки. Псевдоподии и тонкие выросты (филоподии) могут или втягиваться обратно в клетку, или закрепляться на поверхности клетки и затем участвовать в перемещении клетки по субстрату.
  При другом способе передвижения фибриллы актина (микрофиламенты) или тубулина (микротрубочки) являются направляющими структурами, по которым перемещаются специальные подвижные белки - моторы. Последние могут связываться с мембранными или фибриллярными компонентами клетки и тем самым участвовать в их перемещении.
 
  Глава 20. Промежуточные филаменты
  Промежуточные филаменты (ПФ) строятся из фибриллярных мономеров. Поэтому основная конструкция промежуточных филаментов напоминает канат, имеющий толщину около 8-10 нм. Они локализуются главным образом в околоядерной зоне и в пучках фибрилл, отходящих к периферии клеток и располагающихся под плазматической мембраной (рис. 238, 240, 241). Встречаются промежуточные филаменты во всех типах клеток животных, но особенно обильны в тех, которые подвержены механически воздействиям: клетки эпидермиса, нервные отростки, гладкие и исчерченные мышечные клетки. В клетках растений ПФ не обнаружены.
  В состав промежуточных филаментов входит большая группа изобелков, родственных белков, которую можно разделить на четыре типа. Первый - кератины, кислые и нейтральные, встречающиеся в эпителиальных клетках; они образуют гетерополимеры из этих двух подтипов. Кератины, кроме того, имеют некоторую гетерогенность, зависящую от тканевого источника. Так, в эпителиях встречается до 20 форм кератинов, 10 форм других кератинов найдено в волосах и ногтях. Молекулярный вес кератинов колеблется от 40 до 70 тыс.
  Второй тип белков ПФ включает в себя три вида белков, имеющих сходный молекулярный вес (45-53 тыс.). Это - виментин, характерный для клеток мезенхимного происхождения, входящий в состав цитоскелета клеток соединительной ткани, эндотелия, клеток крови. Десмин - характерен для мышечных клеток, как гладких, так и исчерченных. Глиальный фибриллярный белок входит в состав ПФ некоторых клеток нервной глии - в астроциты и некоторые Шванновские клетки. Периферин - входит в состав периферических и центральных нейронов.
  Третий тип - белки нейрофиламентов (мол. вес от 60 до 130 тыс.) встречается в аксонах нервных клеток.
  И наконец, четвертый тип - белки ядерной ламины. Хотя эти последние имеют ядерную локализацию, они сходны по строению и свойствам со всеми белками промежуточных филаментов.
  Как уже говорилось, промежуточные филаменты, построены из фибриллярных белков наподобие каната. При этом некоторые белки могут образовывать сополимеры, например виментин с десмином, или виментин с глиальными белками.
  Все белки промежуточных филаментов обладают сходной аминокислотной последовательностью из 130 остатков в центральной части фибриллярной молекулы, которая обладает ?-спиральным строением. Концевые же участки молекул имеют разные последовательности аминокислот, разную длину, и не имеют ?-спирального строения. Наличие протяженных ?-спиральных участков позволяет двум молекулам образовывать двойную спираль, подобно тому, что приводит к образованию палочковидного димера, длиной около 48 нм. Два димера, объединяясь бок о бок, образуют короткий протофиламент, тетрамер, толщиной около 3 нм. Такие протофиламенты могут объединяться в более толстые и длинные фибриллы и в конечном итоге в промежуточный полный филамент, состоящий из 8 продольных протофиламентов (рис. 242).
  Иначе полимеризуются белки ядерной ламины: они образуют димеры с головками на одном конце и полимеризуются, образую рыхлую прямоугольную решетку. Такие слои ламины быстро разрушаются во время митоза при фосфорилировании ламинов.
  Цитоплазматические промежуточные филаменты относятся к самым стабильным и долгоживущим элементам цитоскелета. Однако in vivo наблюдается включение инъецированных меченых молекул кератина в состав ПФ эпителиальных клеток. ПФ устойчивы к действию солей низкой и высокой концентрации, разрушаются только после воздействия денатурирующих растворов, таких как мочевина.
  Такая структура и химическая устойчивость промежуточных филаментов, вероятно, определяет и их физическую устойчивость. Они служат как бы истинно опорной системой в клетках подвергающихся значительным физическим нагрузкам. В клетках кожного эпидермиса промежуточные филаменты образуют пучки (тонофиламенты), связанные с десмосомами, и создают жесткую внутриклеточную сеть (рис. 243). Так, в нервных аксонах, простирающихся на многие десятки сантиметров, ПФ или нейрофиламенты создают жесткую основу, обеспечивающую гибкость и целостность тонких цитоплазматических отростков нервных клеток. В поперечно исчерченных мышечных клеток десминовые филаменты входят в состав z-дисков и связывают их друг с другом как в составе саркомера, так и в соседних миофибриллах, а также с плазматической мембраной.
  Специфических ингибиторов полимеризации белков промежуточных филаментов пока еще не найдено. Поэтому остается неясным сам процесс сборки и разборки этих элементов цитоскелета в живой клетке. Вероятнее всего, что они подобно ламинам деполимеризуются при действии цитоплазматических киназ, приводящих к их фосфорилированию. Выделенные промежуточные филаменты под действием фосфорилаз могут распадаться на мономеры, деполимеризоваться.
  Топографически в клетке расположение промежуточных филаментов повторяет расположение микротрубочек, они как бы идут бок о бок. При разрушении микротрубочек колхицином, происходит т.н. колапс промежуточных филаментов: они собираются в плотные пучки или кольца вокруг ядра. Восстановление новой сети промежуточных филаментов начинается от зоны клеточного центра. Это наводит на мысль, что центром их полимеризации или нуклеации могут быть центры, общие с микротрубочками.
  Глава 21.Микрофиламенты
 Общие свойства микрофиламентов.
 
  Микрофиламенты встречаются во всех клетках эукариот. Особенно они обильны в мышечных волокнах и клетках - высокоспециализированных клетках, выполняющих функции сокращения мышц. Микрофиламенты (МФ) входят также в состав специальных клеточных компонентов, таких как микроворсинки, ленточные соединения эпителиальных клеток, в состав стереоцилий чувствительных клеток. МФ образуют пучки в цитоплазме подвижных клеток животных, и образуют слой под плазматической мембраной - кортикальный слой (рис. 244а, 245). У многих растительных клеток и клеток низших грибов они располагаются в слоях движущейся цитоплазмы.
  Основным белком микрофиламентов является актин. Актин - неоднородный белок, в различных клетках могут быть разные его варианты или изоформы, каждая из которых кодируется своим геном. Так, у млекопитающих есть 6 различных актинов: один в скелетных мышцах, один в сердечной мышце, два типа - в гладких мышцах (один из них в сосудах), и два, немышечных, цитоплазматических актина, являющихся универсальным компонентом любых клеток млекопитающих. Все эти изоформы актина очень сходны по аминокислотным последовательностям, вариантными в них являются концевые участки, которые определяют скорость полимеризации, но не влияют на сокращение. Такое сходство актинов, несмотря на некоторые отличия, определяет их общие свойства. Актин имеет молекулярный вес около 42 тыс. и в мономерной форме имеет вид глобулы (G-актин), содержащей в своем составе молекулу АТФ. При его полимеризации образуется тонкая фибрилла (F-актин) толщиной 8 нм, представляющая собой пологую спиральную ленту (рис. 246). Актиновые микрофиламенты полярны по своим свойствам. При достаточной концентрации G-актин начинает самопроизвольно полимеризоваться. При такой спонтанной полимеризации актина на образовавшейся нити микрофиламента один из ее концов быстро связывается с G-актином (+)- конец микрофиламента) и поэтому растет быстрее, чем противоположный (минус-конец). Если концентрация G-актина будет недостаточной, то образовавшиеся фибриллы F-актина начинают разбираться. В растворах, содержащих т.н. критическую концентрацию G-актина, будет устанавливаться динамическое равновесие между полимеризацией и деполимеризацией, в результате чего фибрилла F-актина будет иметь постоянную длину (рис. 247). Из этого следует, что актиновые микрофиламенты представляют собой очень динамичные структуры, которые могут возникать и расти или же, наоборот, разбираться и исчезать в зависимости от наличия глобулярного актина. На растущем конце нити актина встраиваются мономеры, содержащие АТФ. По мере нарастания полимера происходит гидролиз АТФ, и мономеры остаются связанными с АДФ. Молекулы актина, связанные с АТФ, прочнее взаимодействуют друг с другом, чем мономеры, связанные с АДФ.
  В клетках такая, казалось бы, неустойчивая фибриллярная система, стабилизируется массой специфических белков, ассоциирующих с F-актином. Так, белок тропомиозин, взаимодействуя с микрофиламентами, придает им необходимую жесткость. Целый ряд белков, например филамин и ?-актинин образуют поперечные скрепки между нитями F-актина, что приводит к образованию сложной трехмерной сети, придающей гелеобразное состояние цитоплазме. Другие дополнительные белки могут связывать филаменты в пучки (фимбрин) и т.д. Кроме того, существуют белки, взаимодействующие с концами микрофиламентов и предотвращая их разборку, стабилизируют их. Взаимодействие F-актина со всей этой группой белков регулирует агрегатное состояние микрофиламентов, их рыхлое или наоборот тесное расположение, связь их с другими компонентами. Особую роль при взаимодействии с актином играют белки миозинового типа, которые образуют вместе с актином комплекс, способный к сокращению при расщеплении АТФ (см. ниже) (рис. 262).
  Таким образом, МФ представляют собой фибриллы полимеризованного актина, связанного с многими другими белками. В принципе микрофиламенты во всех немышечных клетках могут осуществлять по крайней мере два ряда функций: быть частью сократительного аппарата, взаимодействуя с моторными белками (миозин), или участвовать в формировании скелетных структур, способных к собственному движению за счет процессов полимеризации и деполимеризации актина.
  Особенно много сведений о цитоскелете, и о микрофиламентах получено при изучении фибробластов в культуре ткани, обладающих способностью к амебоидному движению. Эти клетки не имеют ответственных за движение постоянных фибриллярных структур, их фибриллярный аппарат все время находится в реорганизации: часть фибриллярных элементов разбирается в одних участках клетки и новообразуется в других.
  Обычно ползущий по поверхности субстрата фибробласт поляризован: у него есть движущийся конец и "хвостовой" отдел. (рис. 248, 249 ) На движущемся конце, который часто более распластан по субстрату, чем боковые и хвостовые участки фибробласта, постоянно возникают и убираются тонкие нитевидные или пластинчатые выросты - ламеллоподии. Это - ведущий край клетки (ламеллоплазма). Который и обеспечивает движение фибробласта вперед. В таком движущемся фибробласте с помощью антител можно узнать места расположения актина. Он будет распределяться по трем основным частям клетки: он в виде тонкого слоя (1) располагается по всему периметру клетки под плазматической мембраной. Это кортикальный (cortex - кора) слой. Обильно актин выявляется в выростах цитоплазмы ведущего края клетки (2) и (3) в пучках актиновых филаментов, отходящих от ведущего края вглубь клетки (рис. 245).
  Кортикальный слой состоит из плотной трехмерной сети актиновых филаментов, ассоциированных с плазматической мембраной (таб. ). Он обеспечивает механическую устойчивость поверхностному слою цитоплазмы и создает условия, позволяющие клетке изменять свою форму и двигаться. Этот слой постоянно меняет свое агрегатное состояние, переходя из состояния структурированного геля в жидкий золь. Такие переходы гель-золь связаны с изменениями в структуре кортикального слоя. Здесь в ассоциации с актиновыми филаментами находятся фибриллярные белки-стабилизаторы (например, филамин), которые образуют сшивки в местах пересечения филаментов, что придает жесткость всему кортикальному слою. Однако эта жесткость может быть легко снята за счет взаимодействия с другими белками, такими как гельзолин, которые вызывают фрагментацию и разборку филаментов и тем разжижают гель. Такая перестройка подмембранного слоя особенно выражена в ведущем крае, что позволяет быстро менять форму его поверхности, образовывать ламеллоподии и двигаться вперед. С другой стороны сеть актиновых филаментов способна к сокращению, т.к. в ней обнаружены короткие миозиновые агрегаты. Это приводит или к втягиванию ламеллоподий или же к подтаскиванию клеток вперед. Сеть актиновых филаментов в ведущем крае организована более определенно, чем в остальном кортексе. Здесь от небольших начальных выростов плазмалеммы внутрь клетки отходят пучки актиновых филаментов, оканчивающихся своими (+)-концами на плазматической мембране.
  Сам процесс образования актиновых филаментов и их роста в зоне ламеллоплазмы зависит от ряда регуляторных белков. Один из них белок WASp/Scar связывается с плазматической мембраной. В его составе есть участки, связывающиеся с актином, другой специальный белковый комплекс Arp2/3, который связывается с (-)-концом растущей цепи полимера, препятствуя его деполимеризации. Такие сложные взаимодействия двух групп регуляторных белков приводят к тому, что на границе с плазматической мембраной происходит надстраивание растущих филаментов, которые могут прогибать плазматическую мембрану так, что возникает тонкий вырост - филоподия (рис. 250).
  Иначе происходит полимеризация актина при образовании ламеллоподий. Здесь также ведущую роль играют белки WASp/Scar, которые закрепляются на плазматической мембране и связываются с комплексом Arp2/3и прикрепляют его к боковой поверхности уже готовой актиновой фибриллы. Комплекс Arp2/3 инициирует полимеризацию новой актиновой фибриллы, которая начинает расти под углом около 700 по отношению к первичной нити актина и закрепляется на плазматической мембране. Таких новых белковых цепей возникает несколько, и они как бы веером простираются к плазматической мембране и толкают ее вперед. Так образуется псевдоподия или ламеллоподия (рис. 251) За счет наращивания актиновых филаментов на (+) концах. Одновременно с этим происходит деполимеризация тех (-) концов филаментов, которые не заблокированы комплексами Arp2/3 и подвергаются воздействию белков, способствующих деполимеризации МФ.
  Таким образом сложный процесс роста МФ приводит к перемещению в пространстве края движущейся клетки. По мере возникновения ламеллоподий их плазматическая мембрана с помощью белков интегринов образует с субстратом фокальные контакты, от которых отходят пучки актиновых филаментов, участвующие уже в другой форме подвижности, связанной со взаимодействиями между актиновыми филаментами и моторными белками-миозинами.
  Миозины являются одним из составных компонентов МФ. Основная работа по перемещению клеток или их внутренних компонентов с помощью МФ происходит за счет работы акто-миозинового комплекса, где актиновые фибриллы играют роль направляющих ("рельсы"), а миозины - транслокаторы. Весь акто-миозиновый комплекс представляет собой АТФ-азу, и движение происходит за счет энергии гидролиза АТФ.
  Миозины представляют собой семейство сходных белков. У всех из них есть головная (моторная ) часть, отвечающая за АТФ-азную активность комплекса, шейка, которая связана с несколькими регуляторными белковыми субъединицами и хвост, характерный для каждого типа миозина, определяющего специфичность функции в клетке. Существуют три основных типа миозинов. Миозин II и миозин V являются димерами, у которых ?-спиральный участок хвоста образует сверхспиральный палочковидный участок. Миозин I представляет собой мономерную молекулу (рис. 252). Две молекулы миозина II могут ассоциировать друг с другом, образуя биполярную толстую фибриллу, участвующую в мышечном сокращении, при сокращении внутриклеточных пучков МФ и при делении клетки. Миозины I и V типа участвуют во взаимодействиях между элементами цитоскелета и мембранами, например в транспорте везикул.
  Механизмы работы актомиозиновых комплексов очень сходен, независимо от типа миозина: он начинается со связи миозиновой головки с актиновым филаментом, ее изгибанием и последующим откреплением. За каждый цикл миозиновая головка перемещается в направлении (+)-конца актинового филамента на 5-25 нм при гидролизе одной молекулы АТФ. Таким образом происходит однонаправленное смещение или скольжение МФ относительно молекул миозина (рис. 253).
  Акто-миозиновые комплексы немышечных клеток
  Акто-миозиновые комплексы участвуют в движении ламеллоплазмы. Так молекулы миозина I были выявлены на ведущем краю движущихся амебных форм диктиостелиума, в то время как миозин II типа обнаруживался в теле и конце клетки. Миозин I типа участвует в движении микроворсинок энтероцитов. Микроворсинки представляют собой тонкие (0,1 мкм) и длинные (около 1 мкм) выросты, тесно расположенные друг около друга, наподобие густой щетки, покрывающей всю поверхность клетки, смотрящую в просвет кишечника. На каждой клетки кишечного эпителия насчитывается несколько тысяч микроворсинок, которые увеличивают всасывающую поверхность в десятки раз (рис. ). Внутри каждой микроворсинки располагается плотный пучок из 20-30 актиновых микрофиламентов. Актиновые нити закреплены своими (+)-концами в вершине микроворсинки. Жесткость всего пучка определяется рядом белков, связывающих актин поперечными связками, фимбрином и фасцином (рис. 254). Нижняя часть актинового пучка вплетена в сеть из молекул спектрина, примембранного белка. Такая фибриллярная арматура делает тонкие микроворсинки жесткими и прочными. В этом проявляется каркасная, скелетная роль микрофиламентов. Но оказалось, что в составе микроворсинок обнаруживается также миозин, относящийся к миозину I, содержащему только одну головку и короткий хвост, которым он связан с плазматической мембраной. Головки миозина I связываются с актиновыми филаментами и могут вызывать укорачивание или удлинение микроворсинок по принципу скользящих нитей.
  Миозин I также вовлекается в транспорт вакуолей. Например, в клетках кишечного эпителия миозин I связан с некоторыми везикулами аппарата Гольджи. С везикулами аппарата Гольджи в клетках мозга позвоночных связан миозин V типа.
  Наиболее широко представлен в актомиозиновых комплексах миозин II типа. Так он входит в состав пучков МФ как в ведущем крае фибробластов, так и в пучках МФ в теле клетки. Считается, что сокращение этих комплексов приводит к подтягиванию клетки вперед (рис. 255). Актиновые пучки в комплексе с миозином II особенно хорошо выявляются в остановившихся фибробластах, где они исполняют совсем другую роль. Эти фибриллярные пучки (они носят название напряженных нитей или стресс-фибрилл) тоже содержат все компоненты мышечных тканей (рис. 256, 257). Они крепятся с помощью фокальных контактов на плазматической мембране и при сокращении их вызывают вне клетки натяжение на фибриллах матрикса (коллагеновые волокна), что, вероятно, способствует ориентированной полимеризации компонентов внеклеточного матрикса. Это доказывается тем, что если фибробласты посадить на тонкие пленочные подложки, то после образования стресс-фибрилл пленка около клеток начинает морщиться, собираться в складки.
  Другие примеры связи актиновых микрофиламентов с плазматической мембраной были приведены при описании клеточных контактов, таких как адгезионный поясок в клетках кишечного эпителия и фокальный контакт фибробластов. Адгезивный поясок контактирует с циркулярным пучком микрофиламентов, в составе которых кроме актина есть и миозиновые молекулы. При акте сокращения этот циркулярный периферический пучок может сжимать клетку, изменять её форму.
  Во время митоза в нормальных условиях клетки животных делятся путем образования перетяжки или борозды деления. Это происходит вследствие того, что в делящейся клетке в её кортикальном слое образуется скопление паралелльно идущих актиновых фибрилл, образующих под плазмалеммой сократимое кольцо. В состав кольца кроме актина входит миозин II и другие мышечные белки; сокращение кольца приводит к возникновению перетяжки на исходной клетке , что в конце концов приводит к делению клетки надвое (рис. 258).
  Цитохалазин - ингибитор полимеризации актина вызывает деполимеризацию актина в сократимом кольце, цитотомии не происходит, и в результате возникает двуядерная клетка, т.к. при этом расхождение хромосом не нарушается.
  Актиновые микрофиламены являются одним из динамичных элементов цитоскелета, который подвержен быстрым перестройкам, особенно в движущихся клетках.
  Мышечные клетки
  Специализированные мышечные клетки многоклеточных животных организмов имеют в цитоплазме сократимые фибриллы, миофибриллы. Особенно много миофибрилл в скелетных мышечных клетках и клетках сердечной мышцы, в гладкомышечных клетках. Скелетные мышцы состоят не из отдельных клеток, а из мышечных волокон, симпластов, образовавшихся за счет слияния мышечных клеток - миобластов. В скелетной и сердечной мускулатуре миофибриллы имеют характерную особенность - они выглядят исчерченными или поперечнополосатыми (отсюда и название - поперечнополосатая мышечная ткань) (рис. 259, 260). В световой микроскоп видно, что пучки миофибрилл окрашиваются неравномерно: через равные промежутки длины в них видно чередование темных и светлых участков. Темные участки называются анизотропными дисками (А-дисками), а светлые - изотропные (I-диски). Светлый I-диск пересекается полоской z. Таким образом, миофибрилла представляет собой нить (толщиной 1-2 мкм) с чередующимися участками:
  А + 1\2 I+ z+ 1\2 I + А + 1\2 I.... и т.д.
  Оказалось, что единицей строения и функционирования является саркомер - участок между двумя Z- дисками. Величина саркомеров в расслабленном состоянии всегда одинакова (1,8-2,8 мкм в зависимости от вида животных). Подробности строения саркомера были получены только при изучении миофибрилл в электронном микроскопе. Оказалось, что миофибрилла подразделяется на ряд более тонких - протофибрилл. Их диаметр в разных частях саркомера различный. В I-дисках встречаются тонкие (около 8 нм) нити длиной около 1 мкм, а в А-дисках кроме тонких присутствуют толстые (около 16 нм толщиной) нити длиной до 1,5 мкм. Все эти нити, протофибриллы, располагаются паралелльно друг другу и в друг друга не переходят. Если рассматривать строение саркомера более подробно, то видно, что вдоль него располагаются три участка протофибрилл: тонкие, связанные с z-диском, затем толстые и снова тонкие, связанные со следующим Z -диском (рис. ). В зоне А-дисков кроме толстых фибрилл располагаются концы тонких, идущих от двух Z -дисков.
  Была выяснена химическая природа всех компонентов миофибрилл. Оказалось, что тонкие нити состоят в основном из белка актина, а толстые - из белка миозина II. Z -диски имеют в своем составе белок ?- актинин и десмин. В тонких нитях кроме актина находятся белки тропомиозин и тропонин.
  Миозин, входящий в состав толстых нитей, - очень крупный белок (мол. вес 500 тыс.), состоящий из шести цепей: двух длинных, спирально обвивающихся одна вокруг другой (тяжелые цепи), и четырех коротких (легкие цепи), которые связываются с глобулярными головками длинных цепей. Последние обладают АТФ-азной активностью, могут реагировать с фибриллярным актином, образуя актомиозиновый комплекс, способный к сокращению. Толщина миозиновых фибрилл связана с тем, что длинные (150 нм) молекулы миозина агрегируют так, что образуют пучки, в которые входит около 300 таких молекул. В миозиновых толстых (16 нм) протофибриллах длинные молекулы лежат "хвост к хвосту" так, что головки миозина располагаются на концах таких нитей, в средней их части головок нет (рис. 261). Головки образуют поперечные мостики, связывающие между собой актиновые и миозиновые нити.
  За счет такой связи головок миозина с актином возникают актомиозиновые комплексы, активность которых в сотни раз выше, чем АТФ-азная активность одних миозинов.
  Актиновые протофибриллы связаны на одном конце с Z -диском, который состоит из палочковидных, биполярных молекул белка ?-актинина, который связывает актиновые фибриллы в пучки. С двух сторон к Z-диску прикрепляются (+)-концы актиновых нитей соседних саркомеров. Функция Z-дисков заключается как бы в связывании соседних саркомеров друг с другом; Z -диски не являются сократимыми структурами.
  Толстые, миозиновые, протофиламенты также связаны с Z-диском: концы толстых протофиламентов также заякорены в Z-диске с помощью длинных и гибких фибриллярных белков - титинов. Миозиновые нити в поперечнике миофибриллы располагаются в гексагональном порядке, так, что каждая миозиновая нить окружается шестью актиновыми нитями (рис. 262). Вообще говоря, в мыщце нет сокращающихся, уменьшающих свою длину молекул. Сокращение происходит за счет уменьшения расстояния между Z-дисками, т.е. за счет уменьшения длины саркомеров примерно на 20%. Механизм мышечного сокращения заключается в кооперативном укорачивании всех саркомеров по всей длине миофибриллы. Г.Хаксли показал, что в основе сокращения лежит перемещение относительно друг друга тонких и толстых нитей. При этом толстые миозиновые нити как бы входят в пространства между актиновыми нитями, приближая друг к другу Z-диски. Эта модель скользящих нитей может объяснить не только сокращение поперечнополосатых мышц, но и любых сократимых структур (рис. 263).
  В гладких мышечных клетках также имеются актиновые и миозиновые нити, но они не так правильно расположены, как в исчерченных мышцах. Здесь нет саркомеров, а среди пучков актиновых протофибрилл без особого порядка располагаются миозиновые молекулы, которые не образуют толстых агрегатов как в случае соматических мышц, а представляют собой комплексы из 15-20 миозиновых молекул (рис. 264).
  Глава 21. Микротрубочки
  Общая характеристика мкротрубочек
  Одним из обязательных компонентов цитоскелета эукариот являются микротрубочки (рис. 265). Это нитчатые неветвящиеся структуры, толщиной 25 нм, состоящие из белков-тубулинов и ассоциированных с ними белков. Тубулины микротрубочек при полимеризации образуют полые трубки, откуда и их название. Длина их может достигать нескольких мкм; самые длинные микротрубочки встречаются в составе аксонемы хвостов спермиев.
  Микротрубочки встречаются в цитоплазме интерфазных клеток, где они располагаются поодиночке или небольшими рыхлыми пучками, или в виде плотноупакованных микротрубочек в составе центриолей, базальных телец и в ресничках и жгутиках. При делении клеток большая часть микротрубочек клетки входит в состав веретена деления.
  В морфологическом отношении микротрубочки представляют собой длинные полые цилиндры с внешним диаметром 25 нм (рис. 266). Стенка микротрубочек состоит из полимеризованных молекул белка тубулина. При полимеризации молекулы тубулина образуют 13 продольных протофиламентов, которые скручиваются в полую трубку (рис. 267). Размер мономера тубулина составляет около 5 нм, равного толщине стенки микротрубочки, в поперечном сечении которой видны 13 глобулярных молекул.
  Молекула тубулина представляет собой гетеродимер, состоящий из двух разных субъедниц, из ?-тубулина и ?- тубулина, которые при ассоциации образуют собственно белок тубулин, изначально поляризованный. Обе убъединицы мономера тубулина связаны с ГТФ, однако на ?-субъдинице ГТФ не подвергается гидролизу, в отличие от ГТФ на ?-субъединице, где при полимеризации происходит гидролиз ГТФ до ГДФ. При полимеризации молекулы тубулина объединяются таким образом, что с ?-субъединицей одного белка ассоциирует ?-субъединица следующего белка и т.д. Следовательно, отдельные протофибриллы возникают как полярные нити, и соответственно вся микротрубочка тоже является полярной структурой, имеющей быстро растущий (+)-конец и медленно растущий (-) конец (рис. 268).
  При достаточной концентрации белка полимеризация происходит спонтанно. Но при спонтанной полимеризации тубулинов происходит гидролиз одной молекулы ГТФ, связанной с ?-тубулином. Во время наращивания длины микротрубочки связывание тубулинов происходит с большей скоростью на растущем (+)-конце. Но при недостаточной концентрации тубулина микротрубочки могут разбираться с обоих концов. Разборке микротрубочек способствует понижение температуры и наличие ионов Са ++.
  Существует ряд веществ, которые влияю на полимеризацию тубулина. Так, алкалоид колхицин, содержащийся в безвременнике осеннем (Colchicum autumnale) , связывается с отдельными молекулами тубулина и предотвращает их полимеризацию. Это приводит к падению концентрации свободного тубулина, способного к полимеризации, что вызывает быструю разборку цитоплазматических микротрубочек и микротрубочек веретена деления. Таким же действие обладают колцемид и нокодозол, при отмывании которых происходит полное восстановление микротрубочек.
  Стабилизирующим действие на микротрубочки обладает таксол, который способствует полимеризации тубулина даже при его низких концентрациях.
  Все это показывает, что микротрубочки являются очень динамичными структурами, которые могут достаточно быстро возникать и разбираться.
  В составе выделенных микротрубочек обнаруживаются ассоциированные с ними дополнительные белки, т.н. МАР-белки (МАР- microtubule accessory proteins). Эти белки, стабилизируя микротрубочки, ускоряют процесс полимеризации тубулина (рис. 269).
  В последнее время процесс сборки и разборки микротрубочек стали наблюдать в живых клетках. После введения в клетку меченых флуорохромами антител к тубулину и при использовании электронных систем усиления сигнала в световом микроскопе, можно видеть, что в живой клетке микротрубочки растут, укорачиваются, исчезают, т.е. постоянно находятся в динамической нестабильности. Оказалось, что среднее время полужизни цитоплазматических микротрубочек составляет всего лишь 5 минут. Так за 15 минут около 80% всей популяции микротрубочек обновляется. При этом отдельные микротрубочки могут на растущем конце медленно (4-7 мкм\мин) удлиняться, а затем достаточно быстро (14-17 мкм\мин) укорачиваться. В живых клетках микротрубочки в составе веретена деления имеют время жизни около 15-20 сек. Считается, что динамическая нестабильность цитоплазматических микротрубочек связана с задержкой гидролиза ГТФ, это приводит к тому, что на (+)-конце микротрубочки образуется зона, содержащая негидролизованные нуклеотиды ("ГТФ-колпачок"). В этой зоне молекулы тубулина связываются с большим сродством друг к другу, и, следовательно, скорость роста микротрубочки возрастает. Наоборот, при потере этого участка, микротрубочки начинают укорачиваться.
  Однако 10-20% микротрубочек остаются относительно стабильными достаточно долгое время (до нескольких часов). Такая стабилизация наблюдается в большой степени в дифференцированных клетках. Стабилизация микротрубочек связана или с модификацией тубулинов или с их связыванием с дополнительными (МАР) белками микротрубочек и с другими клеточными компонентами.
  Ацетилирование лизина в составе тубулинов значительно увеличивает стабильность микротрубочек. Другим примером модификации тубулинов может быть удаление терминального тирозина, что также характерно для стабильных микротрубочек. Эти модификации обратимы.
  Сами микротрубочки не способны к сокращению, однако они являются обязательными компонентами многих движущихся клеточных структур, таких как реснички и жгутики, как веретено клетки во время митоза, как микротрубочки цитоплазмы, которые обязательны для целого ряда внутриклеточных транспортов, таких как экзоцитоз, движение митохондрий и др.
  В целом же роль цитоплазматических микротрубочек может быть сведена к двум функциям: скелетной и двигательной. Скелетная, каркасная, роль заключается в том, что расположение микротрубочек в цитоплазме стабилизирует форму клетки; при растворении микротрубочек клетки, имевшие сложную форму, стремятся приобрести форму шара. Двигательная роль микротрубочек заключается не только в том, что они создают упорядоченную, векторную, систему движения. Микротрубочки цитоплазмы в ассоциации со специфическими ассоциированными моторными белками образуют АТФ-азные комплексы, способные приводить в движение клеточные компоненты.
  Практически во всех эукариотических клетках в гиалоплазме можно видеть длинные неветвящиеся микротрубочки. В больших количествах они обнаруживаются в цитоплазматических отростках нервных клеток, в отростках меланоцитов, амеб и других изменяющих свою форму клетках (рис. 270). Они могут быть выделены сами или же можно выделить их образующие белки: это те же тубулины со всеми их свойствами.
  Центры организации микротрубочек.
  Рост микротрубочек цитоплазмы происходит полярно: наращивается (+)-конец микротрубочки. Так как время жизни микротрубочек очень коротко, то должно постоянно происходить образование новых микротрубочек. Процесс начала полимеризации тубулинов, нуклеация, происходит в четко ограниченных участках клетки, в т.н. центрах организации микротрубочек (ЦОМТ). В зонах ЦОМТ происходит закладка коротких микротрубочек, обращенных своими (-)-концами к ЦОМТ. Считается, что в зонах ЦОМТ (--)-концы заблокированы специальными белками, предотвращающими или ограничивающими деполимеризацию тубулинов. Поэтому при достаточном количестве свободного тубулина будет происходить наращивание длины микротрубочек, отходящих от ЦОМТ. В качестве ЦОМТ в клетках животных участвуют главным образом клеточные центры, содержащие центриоли, о чем будет сказано позже. Кроме того в качестве ЦОМТ может служить ядерная зона, и во время митоза полюса веретена деления.
  Наличие центров организации микротрубочек доказывается прямыми экспериментами. Так, если в живых клетках полностью деполимеризовать микротрубочки или с помощью колцемида или путем охлаждения клеток, то после снятия воздействия первые признаки появления микротрубочек будут появляться в виде радиально расходящихся лучей, отходящих от одного места (цитастер). Обычно у клеток животного происхождения цитастер возникает в зоне клеточного центра. После такой первичной нуклеации микротрубочки начинают отрастать от ЦОМТ и заполнять всю цитоплазму. Следовательно, растущие периферические концы микротрубочек будут всегда (+)-концами, а (-)-концы будут располагаться в зоне ЦОМТ (рис. 271, 272).
  Цитоплазматические микротрубочки возникают и расходятся от одного клеточного центра, с которым многие теряют связь, могут быстро разбираться, или, наоборот, могут стабилизироваться при ассоциации с дополнительными белками.
  Одно из функциональных назначений микротрубочек цитоплазмы заключается в создании эластичного, но одновременно устойчивого внутриклеточного скелета, необходимого для поддержания формы клетки. Найдено, что у дисковидных по форме эритроцитов амфибий по периферии клетки лежит жгут циркулярно уложенных микротрубочек; пучки микротрубочек характерны для различных выростов цитоплазмы (аксоподии простейших, аксоны нервных клеток и т.д.).
  Действие колхицина, вызывающего деполимеризацию тубулинов, сильно меняет форму клетки. Так, если отросчатую и плоскую клетку в культуре фибробластов обработать колхицином, то она теряет полярность. Точно таким же образом ведут себя другие клетки: колхицин прекращает рост клеток хрусталика, отростков нервных клеток, образование мышечных трубок и т.д. Так как при этом не исчезают элементарные формы присущего клеткам движения, такие, как пиноцитоз, ундулирующие движения мембран, образование мелких псевдоподий, то, роль микротрубочек заключается в образовании каркаса для поддержания клеточного тела, для стабилизации и укрепления клеточных выростов. Кроме того, микротрубочки участвуют в процессах роста клеток. Так, у растений в процессе растяжения клеток, когда за счет увеличения центральной вакуоли происходит значительный рост объема клеток, большие количества микротрубочек появляются в периферических слоях цитоплазмы. В этом случае микротрубочки, так же как и растущая в это время клеточная стенка, как бы армируют, механически укрепляют цитоплазму.
  Создавая такой внутриклеточный скелет, микротрубочки могут быть факторами ориентированного движения внутриклеточных компонентов, задавать своим расположением пространства для направленных потоков разных веществ и для перемещения крупных структур. Так, в случае меланофоров (клетки, содержащие пигмент меланин) рыб при росте клеточных отростков гранулы пигмента передвигаются вдоль пучков микротрубочек. Разрушение микротрубочек колхицином приводит к нарушению транспорта веществ в аксонах нервных клеток, к прекращению экзоцитоза и блокаде секреции. При разрушении микротрубочек цитоплазмы происходит фрагментация и разбегание по цитоплазме аппарата Гольджи, разрушение митохондриального ретикулума.
  Долгое время считалось, что участие микротрубочек в движении цитоплазматических компонентов заключается лишь в том, что они создают систему упорядоченного движения. Иногда в популярной литературе цитоплазматические микротрубочки сравнивают с железнодорожными рельсами, без которых движение поездов невозможно, но которые сами по себе ничего не двигают. Одно время предполагали, что двигателем, локомотивом, может быть система актиновых филаментов, но оказалось, что механизм внутриклеточного перемещения различных мембранных и немембранных компонентов связан с группой иных белков.
  Прогресс был достигнут при изучении т.н. аксонального транспорта в гигантских нейронах кальмара. Аксоны, отростки нервных клеток, могут иметь большую длину и заполнены большим числом микротрубочек и нейрофиламентов. В аксонах живых нервных клеток можно наблюдать перемещение различных мелких вакуолей и гранул, которые двигаются как от тела клетки к нервному окончанию (антероградный транспорт), так и в противоположном направлении (ретроградный транспорт). Если аксон перетянуть тонкой лигатурой, то такой транспорт приведет к скоплению мелких вакуолей по обе стороны от перетяжки. Вакуоли, двигающиеся антероградно, содержат различные медиаторы, в том же направлении могут двигаться и митохондрии. Ретроградно двигаются вакуоли, образовавшиеся в результате эндоцитоза при рециклировании мембранных участков. Эти движения происходят с относительно высокой скоростью: от тела нейрона - 400 мм в сутки, в направлении к нейрону -200-300 мм в сутки (рис. 273).
  Оказалось, что из отрезка гигантского аксона кальмара можно выделить аксоплазму, содержимое аксона. В капле выделенной аксоплазмы продолжается движение мелких вакуолей и гранул. С помощью видеоконтрастного устройства можно видеть, что движение мелких пузырьков происходит вдоль тонких нитчатых структур, вдоль микротрубочек. Из этих препаратов были выделены белки, ответственные за движение вакуолей. Один из них кинезин, белок с молекулярным весом около 300 тыс. Он состоит из двух сходных тяжелых полипептидных цепей и нескольких легких. Каждая тяжелая цепь образует глобулярную головку, которая при ассоциации с микротрубочкой обладает АТФ-азной активностью, в то время как легкие цепи связываются с мембраной пузырьков или других частиц (рис. 274). При гидролизе АТФ изменяется конформация молекулы кинезина и генерируется перемещение частицы в направлении к (+)-концу микротрубочки. Оказалось возможным приклеить, иммобилизовать молекулы кинезина на поверхности стекла; если к такому препарату в присутствии АТФ добавить свободные микротрубочки, то последние начинают двигаться. Наоборот, можно иммобилизовать микротрубочки, но добавить к ним мембранные пузырьки, связанные с кинезином - пузырьки начинают двигаться вдоль микротрубочек.
  Существует целое семейство кинезинов, обладающих сходными моторными головками, но отличающихся хвостовыми доменами. Так, цитозольные кинезины участвуют в транспорте по микротрубочкам везикул, лизосом и других мембраных органелл. Многие из кинезинов связываются специфически со своими грузами. Так некоторые участвуют в переносе только митохондрий, другие - только синаптических пузырьков. Кинезины связываются с мембранами через мембранные белковые комплексы - кинектины. Кинезины веретена деления участвуют в образовании этой структуры и в расхождении хромосом.
  За ретроградный транспорт в аксоне отвечает другой белок - цитоплазматический динеин (рис. 275).
  Он состоит из двух тяжелых цепей - головок, взаимодействующих с микротрубочками, нескольких промежуточных и легких цепей, которые связываются с мембранными вакуолями. Цитоплазматический динеин является моторным белком, переносящим грузы к минус-концу микротрубочек. Динеины также делятся на два класса: цитозольные - участвующие в переносе вакуолей и хромосом, и аксонемные - отвечающие за движение ресничек и жгутиков.
  Цитоплазматические динеины и кинезины были обнаружены практически во всех типах клеток животных и растений.
  Таким образом, и в цитоплазме движение осуществляется по принципу скользящих нитей, только вдоль микротрубочек перемещаются не нити, а короткие молекулы - движетели, связанные с перемещающимися клеточными компонентами. Сходство с актомиозиновым комплексом этой системы внутриклеточного транспорта заключается в том, что образуется двойной комплекс (микротрубочка + движетель), обладающий высокой АТФ-азной активностью.
  Как мы видим, микротрубочки образуют в клетке радиально расходящиеся поляризованные фибриллы, (+)-концы которых направлены от центра клетки к периферии. Наличие же (+) и (-)-направленных моторные белков (кинезинов и динеинов) создает возможность для переноса в клетке её компонентов как от периферии к центру (эндоцитозные вакуоли, рециклизация вакуолей ЭР и аппарата Гольджи и др), так и от центра к периферии (вакуоли ЭР, лизосомы, секреторные вакуоли и др) (рис. 276). Такая полярность транспорта создается за счет организации системы микротрубочек, возникающих в центрах их организации, в клеточном центре.
  Глава 23. Клеточный центр
  Итак, в клетках животных, растений и одноклеточных микротрубочки поляризованы, так что большей частью их растущие (+)-концы направлены к периферии клетки. Это связано с тем, что МТ начинают свой рост от специальных участков в клетке, от центров организации микротрубочек (ЦОМТ). Некоторые из ЦОМТ имеют сложную морфологическую организацию, другие устроены иначе. Различные ЦОМТ можно разделить на несколько групп: центросомные клеточные центры, и центры организации микротрубочек, не имеющие четкой локализации.
  Так например, в клетках высших растений полимеризация МТ происходит по периферии клеточного ядра, от которого МТ расходятся радиально. Сходная картина наблюдается при регенерации МТ в гигантских клетках слюнных желез двукрылых. В ряде случаев новообразование МТ, их закладка, нуклеация, может происходить в цитоплазме вне связи со специальными зонами или структурами.
  Но в большинстве случаев в интерфазных клетках животных организмов образование и рост МТ происходит от клеточного центра, содержащего специальные образования - центросомы, которые большей частью могут содержать сложно организованные центриоли, или же не иметь их.
  Центросомы и центриоли
  Центросомы были обнаружены и описаны сто лет назад (Флемминг, 1875; Бенеден, 1876) - это очень мелкие тельца, размер которых находится на границе разрешающей способности светового микроскопа, обычно располагающиеся в геометрическом центре клетки, откуда и их название. В некоторых объектах удавалось видеть, что мелкие плотные тельца (центриоли), обычно в паре (диплосома), окружены зоной более светлой цитоплазмы (собственно центросома), от которой отходят радиально тонкие фибриллы (центросфера) (рис. 277).
  Центросомы характерны и обязательны для клеток животных, и нет у высших растений, у низших грибов и некоторых простейших. Было замечено, что центросомы в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В неделящихся клетках центросомы часть определяют полярность клеток эпителия и располагаются вблизи аппарата Гольджи. Такая связь центросом с аппаратом Гольджи характерна для многих клеток, в том числе для клеток крови и нервных клеток. Часто центросомы лежат рядом с ядром, располагаясь в зонах его впячивания. Например, в полиморфных лейкоцитах (нейрофилы) центросома лежит внутри подкововидного впячивания ядра (рис. 278).
  Типичное строение клеточный центр имеет в клетках животных. Он представляет собой зону, состоящую из центриолей и окружающей их аморфной фибриллярной массы или матрикса. В ряде случаев в состав клеточного центра или центросомы входит только эта фибриллярная масса, от которой отходят микротрубочки (см. ниже).
  Наиболее же часто кроме матрикса в состав клеточного центра входят центриоли, как мелкие тельца, с трудом наблюдаемые в световом микроскопе.
  Тонкое строение центриолей удалось изучить только с помощью электронного микроскопа. Основу строения центриолей составляют расположенные по окружности девять триплетов микротрубочек, образующие таким образом полый цилиндр (рис. 279). Его ширина около 0, 15 мкм, а длина такого цилиндра 0,3-0,5 мкм (хотя встречаются центриоли, достигающие в длину несколько микрон) (рис. 280).
  Первая микротрубочка триплета (А-микротрубочка) имеет диаметр около 25 нм и толщину стенки 5 нм, которая состоит из 13 глобулярных субъединиц. Длина каждого триплета равна длине центриоли. Вторая и третья (В и С) микротрубочки отличаются от А-микротрубочки тем, что они являются неполными, содержат 11 субъединиц и вплотную примыкают к своим соседям. Каждый триплет располагается к радиусу такого цилиндра под углом около 400. Кроме микротрубочек в состав центриоли входит ряд дополнительных структур. От А-микротрубочки отходят так называемые "ручки", выросты, один из которых (внешний) направлен к С- микротрубочке соседнего триплета, а другой (внутренний) - к центру цилиндра.
  Обычно в интерфазных клетках всегда присутствуют две центриоли, располагающиеся рядом друг с другом, образуя дуплет центриолей, или диплосому (рис. 281). В диплосоме центриоли располагаются под прямым углом по отношению друг к другу. Из двух центриолей различают "материнскую" и "дочернюю", продольная ось последней перпендикулярна продольной оси материнской центриоли. Обе центриоли сближены своими концами так, что проксимальный конец дочерней центриоли как бы смотрит на поверхность материнской. В дистальном участке материнской центриоли располагается аморфный материал в виде выростов или шпор - это придатки. Их нет на дочерней центриоли (рис. ).
  Дочерняя центриоль несколько отличается от материнской. Центральная часть цилиндра центриоли занята структурой, напоминающей тележное колесо; она имеет центральную "втулку" диаметром около 25 нм и 9 спиц, направленных по одной к А-микротрубочке каждого из триплетов. Такие структуры внутри центриоли расположены в одном из её концов, проксимальном, что делает строение цилиндра центриоли полярным. На дистальном конце центриоли внутри её нет таких структур. Объем, занимаемый внутри центриоли втулкой со спицами, может составлять у разных клеток от 3\4 до 1\5 длины центриоли. У некоторых видов втулка отсутствует или заменена скоплением аморфного материала. Торцы центриолярного цилиндра, кроме системы втулки и спиц на проксимальном конце, ничем не закрыты.
  Систему микротрубочек центриоли обычно описывают формулой 9 + 0, или (9х3) + 0, подчеркивая отсутствие микротрубочек в её центральной части.
  Вокруг каждой центриоли расположен бесструктурный, или тонковолокнистый матрикс. Сами микротрубочки триплетов погружены в аморфный материал т.н. муфты или оправы. Если выделенные центриоли обработать 0,6М раствором NaCl, то произойдет полная экстракция микротрубочек, но центриоль как таковая не растворится: вместо нее останется цилиндрическая структура, имеющая девять полых отверстий, некогда занимавшихся триплетами микротрубочек. Поэтому все схемы центриолей в этой книге, как и во многих других значительно упрощены и не включают материал муфты центриолярного цилиндра.
  Часто около центриолей и в связи с ним можно обнаружить несколько дополнительных структур: сателлиты, фокусы схождения микротрубочек, исчерченные волокнистые корешки, дополнительные микротрубочки, образующие особую зону - центросферу вокруг центриоли (рис. 282).
  При исследовании в электронном микроскопе интерфазных центриолей было найдено, что лучистое сияние центросферы, обнаруживаемое в световом микроскопе, представляет собой большое число микротрубочек, радиально расходящихся от зоны диплосомы. В диплосоме лишь одна из центриолей, материнская, содержит ряд дополнительных структур. Одни из них, перицентриолярные сателлиты, состоят из имеющей тонкое фибриллярное строение конусовидной ножки, расположенной на стенке центриоли, и головки, заканчивающейся на этой ножке. Ножки сателлитов часто имеют поперечную исчерченность (рис. 284). Количество таких перицентриолярных сателлитов непостоянно, они могут располагаться на разных уровнях по длине центриоли. Кроме этих структур рядом с диплосомой, но не связанные с ней структурно, могут располагаться плотные мелкие (20-40 нм) тельца, к которым подходят одна или несколько микротрубочек (фокусы схождения микротрубочек). Микротрубочки отходят и от головок сателлитов. Эти центросомные микротрубочки не отходят непосредственно от микротрубочек цилиндров центриолей, а связаны или с сателлитами, или с матриксом. Такие микротрубочки и образуют как бы лучистую сферу (центросферу) вокруг центриоли, где (-)-концы МТ связаны с ЦОМТ, а (+)-концы радиально расходятся на периферию клетки. При образовании центросферы в интерфазной клетке только специальные структуры центриоли, сателлиты и матрикс, каким-то образом связаны с образованием микротрубочек; микротрубочки самих центриолей в этом процессе не участвуют. Было найдено, что восстановление прицентриолярных микротрубочек после их деполимеризации на холоду происходит за счет появления новых микротрубочек, отходящих от головок сателлитов. Таким образом, можно считать, что эти дополнительные структуры являются центрами, на которых происходит сборка микротрубочек из тубулинов ( центры организации микротрубочек - ЦОМТ).
  Химия центриолей изучена слабо, потому что еще не разработаны методы получения этой структуры в виде чистой фракции. Трудности биохимического изучения центриолей связаны с тем, что это одиночная клеточная структура, имеющая объем всего 0, 03 мкм3. Для сравнения, вспомним, что в клетке имеется: около тысячи штук митохондрий, около миллиона рибосом, около сотни хромосом, около 1 мм2 мембран.
  Есть все основания говорить о том, что в состав микротрубочек центриолей входят тубулины. Это доказывается тем, что колхицин прекращает рост микротрубочек в процентриолях, возникающих вблизи материнской центриоли. Предположения о возможной химической природе остальных элементов центриоли основаны главным образом на данных, полученных из химии ресничек и жгутиков, имеющих много сходных черт строения с центриолями.
  Данные о химическом строении центриолей получены главным образом с помощью иммунохимических методов. В изолированных базальных тельцах простейшего хламидомонады обнаружено более 200 различных белков, среди которых выявлены четыре вида тубулинов, в том числе ?- тубулин, центрин, перицентрин, белок р210 и многие другие.
  В интерфазных клетках центриоли оказываются связаны с ядром и с ядерной мембраной. При выделении ядер практически все центриоли клеток печени и селезенки крыс оказываются в этой фракции. Связь центриолей с ядром осуществляется главным образом промежуточными филаментами. Если живые клетки подвергнуть ультрацентрифугированию, то центриоли опускаются к центробежному полюсу вместе с ядрами.
  Центросомный цикл
  Было обнаружено, что строение и активность центросом меняются в зависимости от периода клеточного цикла, в течение которого клеточный центр претерпевает тоже циклические изменения (рис. 283).
  Целесообразнее начать рассмотрение циклических изменений в структуре центросом с митоза. Начиная с профазы и кончая телофазой, центросомы имеют сходное строение, несмотря на то, что за время митоза происходит ряд существенных клеточных перестроек: конденсация хромосом, разрушение ядерной оболочки, образование веретена деления, расхождение хромосом. В митозе в клеточных центрах (их два, по одному на каждый полюс клетки) находится по диплосоме. Как полагается, дочерняя центриоль своим концом направлена на материнскую. Материнская центриоль на всех стадиях митоза окружена довольно широкой (до 0,3 мкм) зоной тонких фибрилл - центриолярное фибриллярное гало (рис. 279). От этого гало радиально отходят микротрубочки. Важно подчеркнуть, что у дочерних центриолей ни гало, ни отходящих от центриолей микротрубочек нет. В это время происходит формирование веретена митотического аппарата, состоящего из микротрубочек. Эта структура действительно имеет форму веретена, где на концах его на полюсах клетки располагаются диплосомы, окруженные радиальными микротрубочками (центросфера). В данном случае можно говорить о том, что зоны диплосом, клеточные центры, являются центрами организации (полимеризации) микротрубочек. В пользу этого говорят следующие факты: после исчезновения микротрубочек веретена и центросферы, которые происходят при действии холода или колхицина, новые микротрубочки возникают главным образом в районе материнских центриолей, диплосом, в каждом из полюсов клетки. Интересно, что рост новых микротрубочек не связан с микротрубочками триплетов центриолярного цилиндра, они начинают отрастать от зоны гало, расположенной на материнской центриоли. Важно отметить, что в это время на материнских центриолях (как и на дочерних) нет сателлитов, и в это же время цитоплазма теряет микротрубочки: микротрубочки цитоплазмы разбираются, а пул освободившихся тубулиновых мономеров идет на образование микротрубочек веретена и центросферы, которые образуются на фибриллярном гало, как на ЦОМТ. Этот процесс полимеризации митотических микротрубочек отражает первую форму активности центриолярного аппарата (рис. ). Если в профазе облучить центриоль лазерным микролучем, то образование веретена останавливается.
  Примерно сходное строение имеют клеточные центры на всех стадиях митоза, но к телофазе толщина фибриллярного гало уменьшается.
  К концу телофазы, когда произошло разделение клетки надвое, а хромосомы начали деконденсироваться и образовывать новые интерфазные ядра, происходит разрушение веретена деления, его микротрубочки деполимеризуются. Клеточные центры при этом меняют свою структуру. Материнская и дочерняя центриоли теряют взаимно перпендикулярное расположение и отходят друг от друга на небольшие (0,5-2мкм) расстояния, но все же держатся в одном месте. Вокруг материнской центриоли гало и микротрубочки не выявляются. В это время микротрубочек в цитоплазме также практически нет.
  В начале G1-периода на поверхности материнской центриоли возникают сателлиты, имеющие ножку и головку, от которой радиально отходят микротрубочки, которые начинают расти в длину и заполнять собой цитоплазму (рис. 284а). Следовательно, вторая форма активности клеточного центра - образование цитоплазматических микротрубочек в интерфазных клетках. Надо подчеркнуть, что активной здесь является только материнская центриоль, которую легко узнать по придаткам в ее дистальной части.
  Если считать клеточные центры основными (если не единственными) местами образования цитоплазматических микротрубочек, то общее количество последних должно быть равно числу микротрубочек, отходящих от центриолей. При исследовании в электронном микроскопе оказалось, что от клеточных центров в интерфазе отходит всего лишь несколько десятков микротрубочек, а в цитоплазме их так много, что с помощью иммунофлуоресцентного метода их трудно подсчитать. Это дает основание предполагать, что по мере роста микротрубочек часть из них теряет связь с областью центриолей и может находиться в цитоплазме долгое время. Центросомы же индуцируют полимеризацию новых микротрубочек, которые приходят на смену постепенно деполимеризующимся старым. Вероятно, в цитоплазме есть несколько генераций микротрубочек: "старые", не связанные с клеточным центром, и новые, растущие от центросом. Таким образом, в клетке происходит как бы конвейерная смена и репродукция цитоплазматических микротрубочек.
  Если клеткам запретить переходить в S-период, они могут существовать в фазе клеточного покоя (Go-период) (рис. 285). В это время материнская центриоль продолжает функционировать, как центр образования микротрубочек цитоскелета. Но одновременно она может проявить еще одну форму активности - образовать ресничку, вырост плазматической мембраны, заполненный аксонемой (осевой нитью), состоящей из девяти дублетов микротрубочек. Эти микротрубочки отрастают, как от затравок, от А- и В-микротрубочек триплетов материнской центриоли в дистальной ее части. Это - третья форма активности центриолей как центров организации микротрубочек (см. ниже).
  При наступлении S-периода (или в середине его) клеточный центр приступает к четвертой форме своей активности: происходит удвоение числа центриолей. В это время около каждой из разошедшихся еще в конце телофазы центриолей, материнской и дочерней, происходит закладка новых центриолярных цилиндров - процентриолей (рис. 284б). В районе проксимальных концов каждой центриоли перпендикулярно длинной оси закладывается сначала девять синглетов (одиночных) микротрубочек, затем они преобразуются в девять дуплетов, а потом - в девять триплетов растущих микротрубочек новых центриолярных цилиндров.
  Закладка процентриолей происходит на проксимальных концах центриолей; в этом месте растут новые поколения центриолей, тоже с проксимального конца. Во время роста процентриолей здесь можно видеть центральную "втулку" со спицами.
  Благодаря такому росту структур образуется сначала короткая дочерняя центриоль - процентриоль - которая затем дорастает до размера материнской. Этот способ увеличения числа центриолей был назван дупликацией. Важно отметить, что размножение центриолей не связано с их делением, почкованием или фрагментацией, а происходит путем образования зачатка, процентриоли, вблизи и перпендикулярно к исходной центриоли. Правда, последнее условие соблюдается не во всех объектах, у некоторых оомицетов при дупликации центриоли происходит сначала расхождение центриолей, рост втулки, затем рост микротрубочек вдоль продолжения оси исходной центриоли, и центриоли располагаются конец в конец. Интересно, что триплеты в таких новых центриолях имеют угол наклона, противоположный таковому в материнской центриоли.
  Факт удвоения центриолей привел некоторых исследователей к предположению, что центриоли, так же как митохондрии и пластиды, принадлежат к саморедуплицирующимся компонентам цитоплазмы, хотя прямых данных о наличии ДНК в составе центриолей нет.
  В S-периоде во время удвоения (дупликации) центриолей материнская продолжает проявлять вторую форму активности: она продолжает быть центром образования цитоплазматических микротрубочек.
  В результате процесса дупликации около каждой центриоли вырастает новая дочерняя центриоль (первая материнская центриоль и дочерняя на бывшей дочерней центриоли могут считаться как бы бабушкой и внучкой). Поэтому в клетке после завершения S-периода находятся уже две диплосомы (а всего четыре центриолярных цилиндра) (рис. 286).
  После этого наступает следующий период клеточного цикла, постсинтетический (G2-период), когда в клетке начинается подготовка к очередному делению. В это время исчезают сателлиты на материнской диплосоме (так можно назвать старую материнскую центриоль с новой дочерней), а обе материнские центриоли в обеих диплосомах покрываются фибриллярным гало, от которого в профазе начинают отрастать митотические микротрубочки. Параллельно этому в цитоплазме происходит исчезновение микротрубочек, и клетка стремится приобрести шаровидную форму. Вся такая последовательность событий повторяется от цикла к циклу у клеток, способных к длительному размножению. В большинстве случаев клетки организма находятся в G0-периоде, поэтому у них центриоль участвует в полимеризации цитоплазматических микротрубочек и в образовании реснички (или множества ресничек). В последнем случае она входит в состав так называемого базального тельца.
  Обычно в клетку после деления попадают два центриолярных цилиндра в составе диплосомы. В различных экспериментальных условиях можно запретить разделение клетки надвое и получить клетки с удвоенным числом хромосом (полиплоидные клетки). Совершенно очевидно, что в таких клетках будет и удвоенное число центриолей. Клетки могут снова вступать в клеточный цикл, при этом будет удваиваться как количество ДНК, так и число центриолей. Было обнаружено, что у тетраплоидных (с четырехкратным набором хромосом) клеток печени в G0-периоде в цитоплазме видны не два, а четыре центриолярных цилиндра, а в полюсах при делении таких клеток было обнаружено по две диплосомы в каждом. Аналогичная ситуация замечена и у других полиплоидных клеток (мегакариоциты костного мозга, полиплоидные гибридные клетки и др.). В связи с этим предположили, что между числом плоидности клетки (числом хромосомных наборов) и числом центриолей существует прямая связь.
  Нарушения центриолярного цикла могут вызвать ряд патологических изменений клеток, в первую очередь появление многополюсных митозов. Так, при действии ?-меркаптоэтанола происходит блокада нормального митоза, при этом диплосомы расходятся на отдельные центриоли. При отмывании от этого вещества клетка снова приступает к делению, но в этом случае каждая центриоль активируется и образует полюс веретена. Таким образом, возникают трех- или четырехполюсные митозы, приводящие к неравномерному распределению хромосом между дочерними клетками. Это в свою очередь приводит к изменению числа хромосом (анэуплоидия), которое часто вызывает гибель клетки. Иногда при образовании многополюсных митозов в некоторых полюсах отсутствуют центриоли: в полюсе располагается только фибриллярный материал центросомы (бесцентриолярные полюса).
  Итак, в подавляющем большинстве клеток млекопитающих центросомы участвуют в полимеризации тубулинов и являются структурами, играющими роль центров организации микротрубочек. Микротрубочки самих центриолей являются затравками для полимеризации тубулинов только в одном случае - при росте аксонемы реснички, когда центриоль становится базальным тельцем. Это временное состояние: при переходе клеток к делению реснички могут исчезать, а базальное тельце снова может выполнять роль центриоли, участвуя в организации цитоплазматических микротрубочек или микротрубочек митотического веретена. Только в этих случаях центрами организации микротрубочек являются не сами центриолярные цилиндры, а перицентриолярный материал (головка сателлитов, околоцентриолярный матрикс, гало и т.д.). Следовательно, центриоль как таковую нужно рассматривать как один из компонентов более сложной структуры - клеточного центра или центросомы. Эта оговорка связана с тем, что у всех высших растений ЦОМТ не содержит центриолей. Более того, в раннем эмбриогенезе позвоночных животных образуются веретена деления, не имеющие центриолей в полюсах. По всей вероятности в последних случаях центриоли возникают позже заново, а не образуются путем "репликации". Вопрос о процессе образования центриолей далек от решения. Остается неясным процесс появления процентриолей. В процессе эмбриогенеза отмечены случаи возникновения центриолей de novo у морского ежа, у моллюсков, у мышей. Так, в эмбриогенезе мыши центриоли появляются только после 1-2 делений клеток бластулы, несмотря на то, что сами клеточные деления происходят нормально, за исключением того, что в полюсах деления в зоне бесструктурной центросомы центриоли отсутствуют. С другой стороны, если в соматических клетках культуры ткани уничтожить центросому с центриолью с помощью микрооблучения, то новые центриоли не возникают.
 Базальные тельца. Строение и движение ресничек и жгутиков.
  Как уже указывалось, у многих клеток животных, вышедших из клеточного цикла, в G0-стадии центриоли принимают участие в образовании аппарата движения - ресничек. Их две группы: кинетоцилии, характерные для специальных эпителиев (ресничные эпителии трахеи, яйцеводов) или свободно плавающих клеток (сперматозоиды, простейшие), и так называемые первичные реснички, встречающиеся во многих клетках, не обладающих способностью к движению.
  Вначале рассмотрим строение кинетоцилей - подвижных ресничек и жгутиков. В световом микроскопе эти структуры видны как тонкие выросты клетки, в их основании в цитоплазме видны хорошо красящиеся мелкие гранулы - базальные тельца, аналоги центриолей (рис. 287). Клетки, имеющие реснички или жгутики, обладают способностью двигаться, будучи в свободном состоянии, или же перемещать жидкости в случае, если клетки неподвижны. Свободноживущие одноклеточные организмы, снабженные одним или несколькими жгутиками, обычно движутся тем концом вперед, который несет жгутики. Иной способ движения можно видеть у спермиев некоторых животных: жгутик, располагаясь сзади, толкает тело клетки вперед. Скорость движения клеток за счет работы жгутиков может достигать очень большой величины (до 5 мм / мин).
  Множественные реснички также могут обеспечивать движение свободноживущих клеток, таких как инфузории или некоторые жгутиконосцы. Реснички эпителиальных клеток многих беспозвоночных и позвоночных животных обеспечивают поток жидкостей вдоль поверхности таких клеток. Число ресничек на клетку может достигать 300 в эпителии трахеи; у инфузории туфельки на клетку приходится 10-14 тыс. рядами расположенных ресничек.
  При движении ресничек и жгутиков не происходит уменьшения их длины, поэтому неправильно называть это движение сокращением. Траектория движения ресничек очень разнообразна (рис. 288). В различных клетках это движение может быть маятникообразным, крючкообразным, воронкообразным или волнообразным.
  У многоресничных клеток (инфузории, клетки ресничного эпителия) движение ресничек не хаотично, а строго упорядочено. В этом случае реснички расположены рядами. В продольном ряду отдельные реснички начинают движение и проходят отдельные его фазы по очереди, метахронно. В поперечном же ряду все реснички находятся в одной фазе движения (синхронны). Это создает движущую волну по поверхности клетки (рис. )289.
  Общая архитектура реснички представлена на рис. 290, 291. Ресничка представляет собой тонкий цилиндрический вырост цитоплазмы с постоянным диаметром 300 нм. Этот вырост от основания до самой его верхушки покрыт плазматической мембраной. Внутри выроста расположена аксонема, сложная структура, состоящая в основном из микротрубочек. Нижняя, проксимальная часть реснички, базальное тельце, погружена в цитоплазму. Диаметры аксонемы и базального тельца одинаковы (около 200 нм).
  На поперечном сечении реснички видна плазматическая мембрана, окружающая аксонему. Аксонема в своем составе имеет девять дублетов микротрубочек, образующих внешнюю стенку цилиндра аксонемы. Дублеты микротрубочек слегка повернуты (около 100) по отношению к радиусу аксонемы. Кроме периферических дублетов микротрубочек в центре аксонемы располагается пара центральных микротрубочек. В целом систему микротрубочек реснички описывают как (9х2)+2. В дублетах микротрубочек также различают А-микротрубочку, состоящую из 13 субъединиц, и В-микротрубочку, неполную, содержащую 11 субъединиц. А-микротрубочка несет на себе ручки, которые направлены к В-микротрубочке соседнего дуплета. От А-микротрубочки к центру аксонемы отходит радиальная связка, или спица, оканчивающаяся головкой, присоединяющейся к центральной муфте, имеющей диаметр около 70 нм, окружающей две центральные микротрубочки. Последние лежат отдельно друг от друга на расстоянии около 25 нм. Таким образом, в аксонеме располагается 20 продольных микротрубочек, в то время как в базальном тельце их 27 (рис. 291, 292).
  Базальное тельце состоит из 9 триплетов микротрубочек (как и центриоль), имеет ручки, втулку и спицы, расположенные в проксимальной (нижней) ее части. На участке базального тельца, примыкающем к плазматической мембране, есть девять придатков, выступов, идущих от каждого триплета микротрубочек к плазматической мембране и связывающих его с клеточной поверхностью.
  Базальное тельце и аксонема структурно связаны друг с другом и составляют единое целое: А- и В-микротрубочки триплетов базального тельца продолжаются в А- и В-микротрубочках дуплетов аксонемы. Однако внутренние части аксонемы и базального тельца значительно отличны друг от друга. Часто в зоне перехода базального тела в аксонему наблюдают аморфную поперечную пластинку, которая как бы отделяет эти две части. Центральные микротрубочки аксонемы начинаются от этой пластинки так же, как в этом месте начинается и центральная муфта (капсула) (рис. 290).
  В основании ресничек и жгутиков часто встречаются исчерченные корешки, или кинетодесмы, представляющие собой пучки тонких (6 нм) фибрилл, обладающих поперечной исчерченностью (рис. 293). Часто такие исчерченные кинетодесмы простираются от базальных телец вглубь цитоплазмы по направлению к ядру. Роль этих структур не ясна. Они не изменяются при действии колхицина, могут встречаться и в составе центриолей интерфазных клеток, не принимающих участия в образовании ресничек.
  При движении ресничек не происходит изменения их длины, они не "сокращаются", а изгибаются, бьются. Оказалось, что механически отделенные реснички способны к биению в присутствии АТФ. При отделении ресничек базальные тельца остаются в теле клетки. Это означает, что для механической работы ресничек базальное тело не нужно, а только аксонема участвует в генерации движения. Удалось показать, что за движение ресничек отвечают "ручки", сидящие на А-микротрубочках. При экстракции компонентов ручек реснички перестают биться в присутствии АТФ.
  Было найдено, что в состав ручек входят белки динеины. Это большие белковые компоненты, состоящие из 9-12 полипептидных цепей, содержащие 2-3 глобулярные головки, связанные в общий корешок гибкими хвостами (рис. 294). Каждая головка динеина обладает АТФ-азной активностью, которая возрастает примерно в 6 раз при ассоциации с микротрубочками. В состав каждой ручки входит один белковый комплекс, одна молекула динеина. Так как экстракция ручек прекращает биение ресничек, то можно считать, что именно динеин ответственен за это движение, то есть динеин является мотором или двигателем при биении ресничек. Но каков механизм этого движения?
  Этот вопрос был решен при использовании выделенных ресничек, лишенных плазматической мембраны, радиальных спиц и связок после частичной обработки аксонем протеазами. Оказалось, что такие аксонемы, содержащие динеиновые ручки, при добавлении к ним АТФ начинают увеличиваться в длину почти до девяти раз и одновременно утончаются. В электронном микроскопе видно, что такая аксонема увеличилась в длину за счет смещения пар микротрубочек одна относительно другой (рис. 295). Другими словами, произошло продольное скольжение дуплетов один относительно другого, аналогично тому, что происходит при сокращении саркомеров в мышце: скольжение миозиновых нитей относительно актиновых. В случае динеина повторные циклы ассоциации с субъединицами тубулина, изменения конформации при связывании АТФ и его гидролизе, вызывают перемещение головок вдоль микротрубочки от (+)-конца к (-)-концу. При этом соседний дуплет двигается к верхушке реснички. Когда ресничка содержит все компоненты, и дуплеты микротрубочек связаны друг с другом и с центральной парой микротрубочек, такие кооперативные смещения дуплетов микротрубочек приводят не к удлинению реснички, а к ее изгибу (рис. 296). Как регулируется последовательное перемещение дуплетов один относительно другого, еще не ясно.
  Рост ресничек, удлинение микротрубочек их аксонем происходит на вершине реснички. Следовательно, там локализованы (+)-концы микротрубочек.
  Образование аксонемы ресничек происходит за счет роста А- и В-микротрубочек центриолей, которые в этом случае становятся базальным тельцем. В простейшем случае при образовании одиночных ресничек или так называемых первичных ресничек материнская центриоль подходит к плазматической мембране своим дистальным торцом, связывается с ней своими придатками. В это время начинается рост микротрубочек на (+)- концах А- и В-микротрубочек триплетов. Возникают девять дублетов микротрубочек аксонемы, которые, наращиваясь с (+)-концов на верхушке аксонемы как бы вытягивают плазматическую мембрану, образуя вырост - ресничку. Две центральные микротрубочки возникают в связи с плотным веществом, лежащим на границе бывшей центриоли и выроста плазматической мембраны (рис. 290а).
  При образовании многоресничных клеток происходит многочисленная репликация центриолей и образование многочисленных ресничек.
  В ресничном эпителии позвоночных множественные базальные тельца возникают вокруг так называемых дейтеросом - аморфных электронноплотных структур размером от 60 до 700 нм, по периферии которых происходит закладка множественных зачатков базальных телец. Вокруг одной дейтеросомы образуются до десятка новых базальных телец. Они затем мигрируют к плазматической мембране и принимают участие в образовании аксонем (рис. 298).

<< Пред.           стр. 6 (из 7)           След. >>

Список литературы по разделу