<< Пред. стр. 49 (из 55) След. >>
окрестности "черных дыр" и даже в самое их нутро. Разработанонесколько математических моделей подобных в принципе
невозможных путешествий (с чем согласны и сами разработчики
"виртуальных" проектов), опубликовано множество статей и книг.
Одно из типичных описаний, заимствованное из книги У. Кауфмана
"Космические рубежи теории относительности" (М., 1981),
позволяет проникнуть не только в умопомрачительный мир "черных
дыр", но и в мир парадоксального мышления современных
космологов-релятивистов.
Представим человека, падающего в "черную дыру", -- так
обычно начинаются описания невероятных мыслепутешествий.
Предположим, что он падает вниз ногами. Падение все время
свободное, так что человек находится в состоянии невесомости.
Однако при сближении с "черной дырой" он начинает ощущать нечто
необычное, поскольку его ноги оказываются ближе к "черной
дыре", чем голова. Дело в том, что ноги будут падать быстрее
головы. В результате "экспериментатор" станет вытягиваться в
длинную тонкую нить. К моменту пересечения горизонта событий
его длина может достичь сотни километров. Популяризатор
осознает, что падение в "черную дыру" -- занятие не из
приятных, ибо еще задолго до того, как испытуемый приблизится к
фотонной сфере, его тело будет разорвано приливными силами
невероятной мощи.
Могут ли вообще возникать сами "черные дыры"? Не
потребуется ли бесконечно длительный срок (с нашей точки
зрения) для того, чтобы поверхность умирающей звезды достигла
горизонта событий? И да, и нет! -- считают теоретики.
Безусловно верно, что последние несколько атомов на поверхности
коллапсирующей звезды никогда не уйдут за горизонт событий. Но
дело не в этом. Ведь, согласно математическим расчетам, вся
звезда становится практически "черной" уже спустя несколько
тысячных секунды после начала коллапса. И при формировании
горизонта событий можно считать, что почти вся звезда уже
очутилась за горизонтом. Вещество под горизонтом событий очень
быстро падает на сингулярность. На трехмерной диаграмме
пространства-времени эта картина выглядит следующим образом
(рис. 127).
Радиус горизонта событий часто называют шварцшильдовским
радиусом (автор решения Шварцшильд). Как только необходимое
количество вещества уйдет под шварцшильдовский радиус,
образуется горизонт событий, и это вещество оказывается в
ловушке, где оно коллапсирует до самой сингулярности. А
несколько замешкавшихся атомов из внешних слоев умирающей
звезды так и не смогут никогда перебраться под горизонт событий
и обречены вечно парить над поверхностью со шварцшильдовским
радиусом.
Чтобы лучше разобраться в структуре "черных дыр",
представьте себе воображаемое путешествие на космическом
корабле, оборудованном большими смотровыми иллюминаторами.
Используя такую "технику", можно узнать, что увидели бы
бесстрашные астронавты, если бы они действительно отправились в
путешествие к различным типам "черных дыр", в сами эти дыры и
даже сквозь них.
Шварцшильдовские радиусы черных дыр,
обладающих разными массами
________________________________________________________________
Масса черной дыры Шварцшильдовский радиус
(радиус горизонта событий)
________________________________________________________________
1 т 13.10- 15 ангстрем
106 т 13.10- 9 ангстрем
1012 т 13.10- 3 ангстрем
1015 т 13 ангстрем
1 масса Земли 0,8 см
1 масса Юпитера 2,8 м
1 масса Солнца 3 км
2 массы Солнца 6 км
3 массы Солнца 9 км
5 масс Солнца 15 км
10 масс Солнца 30 км
50 масс Солнца 150 км
100 масс Солнца 300 км
103 масс Солнца 3.103 км
106 масс Солнца 10 световых секунд
109 масс Солнца 2,8 свет. часов
1012 масс Солнца 117 свет. дней
1015 масс Солнца 320 свет. лет
_______________________________________________________________________
Вообразим космический корабль, показанный на рисунке 128.
Он снабжен двумя большими иллюминаторами. Носовой иллюминатор
смотрит прямо в центр "черной дыры", а кормовой -- в
противоположном направлении. Из каждого иллюминатора видна
половина всего неба. Космический корабль обладает очень мощными
ракетными двигателями, позволяющими ему удерживаться на разных
высотах над горизонтом событий. На борту корабля находятся два
астронома, которые фотографируют с различных расстояний от
черной дыры все, что им видно из иллюминаторов.
Для удобства астрономы выражают свое расстояние от "черной
дыры" в шварцшильдовских радиусах, а не милях или километрах
(шварцшильдовский радиус -- это радиус горизонта событий). Чем
массивнее "черная дыра", тем больше ее шварцшильдовский радиус.
В нижеприведенной таблице приведены значения шварцшильдовского
радиуса "черных дыр", обладающих разными массами (рис. 129).
(Следует принять во внимание, что поперечник горизонта событий
"черной дыры" -- это в точности удвоенная величина ее
шварцшильдовского радиуса, а раз поперечник горизонта событий
равен удвоенному шварцшильдовскому радиусу, то поперечник
фотонной сферы -- это утроенный шварцшильдовский радиус).
Путешествие двух астрономов на воображаемом космическом
корабле начинается с того, что этому уникальному кораблю
предоставляется возможность просто падать на "черную дыру"
вдоль ее радиуса. На разных этапах сближения с дырой космонавты
включают мощные ракетные двигатели, которые мгновенно
останавливают падение корабля. В эти моменты покоя астрономы
делают два снимка - один из носового иллюминатора (вид в
сторону "черной дыры"), а другой -- из кормового (вид назад на
Вселенную). Корабль останавливался пять раз, и всякий раз
делались две фотографии. (На рис. 130 показано, где был
космический корабль относительно "черной дыры" в моменты
получения снимков.) Полученные фотоснимки, согласно
теоретическим расчетам, должны выглядеть следующим образом
(рис. 131).
Фото А (вид издалека от черной дыры). Расстояние от
"черной дыры" равно многим шварцшильдовским радиусам. "Черная
дыра" выглядит отсюда как маленькое черное пятнышко в центре
поля зрения носового иллюминатора.
Фото Б (вид с расстояния 5 шварцшильдовских радиусов). При
взгляде с 5 шварцшильдовских радиусов угловой поперечник
"черной дыры" составляет около 46o; она занимает центральную
часть поля зрения носового иллюминатора. Дали Вселенной все еще
видны в кормовой иллюминатор, хотя там уже заметны некоторые
искажения.
Фото В (вид с расстояния 2 шварцшильдовских радиусов). При
взгляде с 2 шварцшильдовских радиусов угловой поперечник
"черной дыры" достигает 136o, и она закрывает большую часть
поля зрения носового иллюминатора. Вид в кормовом иллюминаторе
еще более искажен, чем на фото Б.
Фото Г (вид с поверхности фотонной сферы). При взгляде с
фотонной сферы (1,5 шварцшильдовского радиуса) "черная дыра"
заполняет все поле зрения носового иллюминатора, так что ее
угловой поперечник равен 180o. Вид назад также чрезвычайно
искажен, особенно по краям поля зрения.
Фото Д (вид с высоты в несколько метров над горизонтом
событий). Прямо над горизонтом событий носовой иллюминатор
сплошь черный. Кажущиеся "края" "черной дыры" теперь заполняют
со всех сторон кормовой иллюминатор. Видимая через него внешняя
Вселенная сжалась теперь в небольшой кружок с центром в
направлении от "черной дыры".
На очень больших расстояниях от "черной дыры" сама дыра
выглядела как маленькое пятно света в середине носового
иллюминатора (рис. 131, А). Окружающее небо оставалось
практически неискаженным, за одним важным исключением. Все
звезды во Вселенной посылают хоть немного света в окрестности
фотонной сферы. Этот свет кружит вокруг "черной дыры"
раз-другой или больше, а затем его траектория раскручивается
спиралью навстречу космическому кораблю. Поэтому астроном,
проводящий наблюдения через носовой иллюминатор, видит
многократные изображения всех звезд Вселенной, обрамляющие
видимый "край" "черной дыры". (Чтобы рисунки 131, А-Д не
получились перегруженными, все эти многократные изображения
опущены.) Таким образом, вид неба около "черной дыры" будет
весьма сложным и искаженным.
Рис. 131, Б показывает, что будет видно с расстояния в 5
шварцшильдовских радиусов. Так как космический корабль в этом
случае находится вблизи "черной дыры", она представляется
большей, чем на рис. 131, А. На расстоянии в 5 шварцшильдовских
радиусов (что соответствует расстоянию 150 км, если "черная
дыра" имеет массу в 10 солнечных масс) угловой поперечник дыры
равен примерно 56o. Вид же из кормового иллюминатора остается
практически неискаженным. С расстояния в 2 шварцшильдовских
радиуса (60 км от черной дыры в 10 раз более массивной, чем
Солнце) "черная дыра" -- основной объект в небе перед
космическим кораблем. Ее угловой поперечник увеличился уже до
136o (рис. 131, В). Все видимое вокруг нее из носового
иллюминатора небо чрезвычайно сильно искажено и заполнено
многократными изображениями огромного количества звезд и
галактик. Даже из кормового иллюминатора небо наблюдается уже
сильно искаженным. С "высоты" фотонной сферы (45 км от "черной
дыры" в 10 раз массивней Солнца) изображение "черной дыры"
занимает все поле зрения носового иллюминатора космического
корабля, как видно на рисунке 131, Г. По краям поля зрения
кормового иллюминатора теперь видны бесчисленные многократные
изображения.
По мере дальнейшего приближения космического корабля к
горизонту событий "черная дыра" начинает просматриваться по
краям поля зрения кормового иллюминатора. Вся внешняя Вселенная
видна теперь как маленький кружок в центре кормового
иллюминатора (рис. 131, Д). Размеры этого кружка определяются
углом раствора конуса выхода. На самом горизонте событий (это
примерно в 30 км от центра черной дыры в 10 раз более
массивной, чем Солнце), где конус схлопывается, все звезды неба
собираются в одной точке в центре поля зрения кормового
иллюминатора.
Вспомним, что воображаемый космический
корабль-самоубийца снабжен мощными ракетными двигателями,
способными остановить его падение на разных расстояниях от
"черной дыры", так что астронавты могут не спеша вести свои
наблюдения. Однако гравитационное поле "черной дыры" настолько
мощное, что уже на расстоянии нескольких шварцшильдовских
радиусов двигатели ракеты должны работать на полную мощность.
Еще задолго до того, как астрономы доберутся до точки, из
которой они смогли бы сделать снимок Б, им придется испытать
действие ускорения, составляющего тысячи g, которое буквально
расплющит их о переборки корабля.
Чтобы избежать подобной участи, другие два астронома
принимают решение совершить свободное падение в "черную дыру"
до конца. Их космический корабль новейшей конструкции вообще
лишен ракетных двигателей, которые замедляли бы его падение.
Более того, чтобы избежать разрывающего действия приливных сил,
произведена микроминиатюризация как космического корабля, так и
самих космонавтов. Тем не менее они понимают, что и такая
экспедиция равносильна самоубийству, ибо, попав под горизонт
событий, они будут обречены упасть на сингулярность. Эти два
астронавта видят из иллюминаторов своего обреченного на гибель
космического корабля совершенно иную картину. Однако, чтобы
понять смысл этой картины, придется сначала уяснить природу
шварцшильдовской геометрии.
Далее рассматривается следующая из виртуальных моделей с
приведением множества схем, графиков, иллюстраций. Затем --
следующая. Пока очередь не доходит до совершенно фантастических
вариантов. К таковым относится, к примеру, так называемое
керровское (по имени математика Керра) решение проблемы
применительно к вращающимся "черным дырам" с использованием
элипсоидальной системы координат. В итоге получаются совершенно
умопомрачительные результаты, не совместимые ни со здравым, ни
с каким угодно иным смыслом*. Но таков закономерный результат
теоретических штудий и упражнений, когда они -- в полном отрыве
от реальной действительности опираются исключительно на игру
воображения. Dixi etanimam meam salv-avi. [Я сказал и тем спас
свою душу].
* См.: Кауфман У. Космические рубежи теории
относительности. М., 1981. С. 278.
КОСМИЧЕСКИЕ КОНТАКТЫ
Одной из самых интригующих и по сей день не разгаданных
тайн Вселенной является вопрос о возможных контактах между
разумными существами, населяющими безграничные космические
просторы и бесчисленные миры. Правда, для начала хорошо бы
доказать, что такие гуманоиды существуют, и выявить, что они из
себя представляют. Писатели-фантасты считают это как бы самим
собой разумеющимся. Но не только они. Еще ученик Демокрита
Метродор Хиосский писал: "Невозможно, чтобы в громадном поле
рос только один пшеничный колос, и также невероятно, что в
бескрайней Вселенной есть только один обитаемый мир".
Тема множественности обитаемых миров -- одна из
излюбленных в науке ХVII - ХVIII веков. Ей отдали дань многие
выдающиеся мыслители -- ученые и философы. Опубликованный в
1686 году трактат Бернара Фонтенеля "Разговоры о множестве
миров", посвященный главным образом вопросу о населенности
Космоса живыми разумными существами, надолго стал европейским
бестселлером (в 1740 году он был переведен на русский язык
Антиохом Кантемиром). Фонтенель показал читателю все известные
планеты и вывел его в звездные просторы, где каждая
звезда-солнце также освещает какой-нибудь населенный мир.
Мы, люди, во Вселенной не что иное, как небольшая семья,
все лица которой друг с другом схожи. Но на какой-нибудь другой
планете есть другая семья, лица которой имеют совсем другой
вид. Ясно, что различия возрастают по мере все большего
удаления, и, если бы кто-нибудь увидал рядом жителя Луны и
жителя Земли, он сейчас же заметил бы, что они принадлежат
более близким друг к другу мирам, чем житель Земли и житель
Сатурна. Если здесь пользуются для разговора голосом, то на
другой планете могут объясняться лишь знаками, а на третьей,
еще более удаленной, возможно, не говорят вовсе. Здесь
рассуждение основывается на опыте; там опыт мало способствует
рассуждениям: а еще дальше старики не более сведущи, чем дети.
Здесь морочат себе голову будущим больше, чем прошедшим; там
прошедшее больше заботит людей, чем будущее; а еще дальше не
заботятся ни о прошедшем, ни о будущем, и, быть может, эти
существа далеко не самые несчастные. Говорят, что мы,
по-видимому, лишены от природы шестого чувства, которое помогло
бы нам узнать многое из того, чего мы не ведаем. Очевидно, это
шестое чувство находится в каком-нибудь другом мире, где в свою
очередь отсутствует какое-либо из наших пяти чувств. Быть
может, существует даже большее количество всяких природных
чувств. Но в дележе, который мы произвели с обитателями других
планет, нам досталось всего только пять, которыми мы и
удовлетворились, поскольку другие чувства остались нам
неведомы. Поэтому наши знания имеют известные границы, каковые
человеческому разуму никогда не перешагнуть: наступает момент,
когда нам вдруг недостает наших пяти чувств; то, что остается
нам непонятным, понимают в других мирах, которым, наоборот,
неизвестно кое-что из того, что знаем мы. Наша планета
наслаждается сладким ароматом любви, и в то же время во многих
своих частях она опустошаема ужасами войны. На какой-нибудь
другой планете вкушают вечный мир, но среди этого мира жители
ее совсем не знают любви и томятся скукой. Наконец, то, что
природа совершила в малом, среди людей, для распределения благ
и талантов, то она, несомненно, повторила в больших размерах
для миров и при этом не преминула пустить в ход чудесный
секрет, помогающий ей все разнообразить и в то же самое время
все уравнивать -- в виде компенсации.
..........................................................
Но что сказать о жителях Меркурия? Они более чем в два
раза ближе к Солнцу, чем мы. Должно быть, они обезумевают от
бушующих в них жизненных сил. Я думаю, что у них совсем нет
памяти -- не более, чем у большинства негров; что они никогда