<< Пред.           стр. 4 (из 16)           След. >>

Список литературы по разделу

  Применение сверхпроводников позволит существенно сократить рассеяние энергии в различного рода электрических цепях и особенно при электропередаче, потери в которой в настоящее время составляют около 20%.
  Химические лазеры. Сравнительно недавно установлено, что в результате реакции атомарного водорода с молекулярным хлором образуется хлороводород и атомарный хлор. При этом излучается инфракрасный свет. Анализ спектра излучения показал, что существенная часть энергии (около 40%) обусловливается колебательным движением молекул хлороводорода. Исследования такого излучения привели к созданию первого химического лазера - устройства, преобразующего энергию реакции водорода с хлором в когерентное излучение. Химические лазеры отличаются от обычных тем, что превращают в когерентное излучение не энергию электрического источника, а энергию химической реакции. Созданы десятки химических лазеров, в том числе и достаточно мощные для инициирования термоядерного синтеза (иодный лазер) и для военных целей (водородно-фторидный лазер). Мощные химические лазеры позволяют разрабатывать специализированные технологические системы. Благодаря энергетической автономии и большой удельной энергии химические лазеры найдут применение при освоении новых технологий в космосе.
  Атомный лазер. Одним из важнейших последних достижений естествознания является создание в 1997 г. атомного лазера, способного излучать не свет, а пучок атомов. Пучок атомов обладает необычным свойством - когерентностью, присущей волнам, т.е. он похож на лазерное излучение.
  На первой стадии формирования когерентного атомного пучка производился захват атомов натрия магнитной ловушкой. Захваченные атомы подвергались охлаждению, при котором эквивалентные им длины волн увеличиваются. Когда температура приближается к абсолютному нулю, длины волн становятся настолько большими, что они начинают перекрываться и вся группа атомов представляет собой единое целое. Такой конденсат атомов, подчиняющийся статике Бозе-Эйнштейна, был получен в 1995 г. в Американском национальном институте стандартов и технологии университета штата Колорадо. При этом применялся метод лазерного охлаждения и удержания атомов, за разработку которого американские ученые Стивен Чу и Уильям Филипп, а также французский физик Клод Коэн -Таннуджи удостоены Нобелевской премии 1997 г. в области физики. Следует отметить, что идея лазерного охлаждения атомов и принци-
 91
 
 пиальная схема экспериментальной установки для его осуществления были предложены в Институте спектроскопии Российской академии наук группой ученых под руководством В. Летохова, результаты исследований которых опубликованы еще в 1986 г.
  В сложной лазерной ловушке, основанной на комбинации нескольких эффектов, удалось охладить атомы гелия до 0,0002 К. С применением сильного охлаждения можно удерживать антиматерию, изучать взаимодействие атомов, производить сверхточные спектральные измерения, исследовать на молекулярном уровне свойства молекул ДНК и т.п. Полученный в лазерных ловушках конденсат является рабочей средой для атомного лазера, открывающего новое весьма перспективное направление в современном естествознании.
  Молекулярные пучки. Молекулярный пучок представляет собой струю молекул при испарении вещества в специальной печи и пропускании его через узкое сопло, формирующее пучок в камере со сверхвысоким вакуумом, исключающим межмолекулярные столкновения. При направлении молекулярного пучка на реагент - соединение, вступающее в реакцию, - при сравнительно низком давлении (10-10 атм) возрастает вероятность участия каждой молекулы только в одном столкновении, приводящем к реакции. Для проведения такого сложного эксперимента требуется камера со сверхвысоким вакуумом, источник молекулярных пучков, высокочувствительный масс-спектрометр и электронные определители времени свободного пробега молекул. С помощью молекулярных пучков удалось определить, например, ключевые реакции при горении этилена.
  Технология атомных размеров. Современная наноэлектроника основана на технологии с атомным разрешением, включающей молекулярную эпитаксию, нанолитографию и зондовую микроскопию. Молекулярная эпитаксия позволяет получить моноатомные слои вещества, толщина которых сравнима с размером атома. Разрешение электронно-лучевой на-нолитографии достигает 1-10 нм. Методы современной зондовой микроскопии обеспечивают наблюдение с атомным разрешением. Атомные зонды, кроме того, можно использовать для перемещения отдельных атомов, локального окисления и травления, а также для исследования свойств атомных частиц. Все это вместе взятое составляет техническую базу для создания современных наноэлектронных устройств.
  Геном человека. Летом 2000 г. средства массовой информации сообщали: американские ученые успешно завершили подготовку полного текста генома человека, т.е. всей совокупности его генов, состоящей примерно из 3 млрд. "букв" - пар нуклеотидов. К настоящему времени со-92
 
 ставлен черновой вариант "текста", в котором не исключены ошибки и некоторые свободные места. Такая огромная работа завершена в 2000 г., через 100 лет после открытия Г. Менделем (1822-1884) фундаментальных законов наследственности. Предполагается, что к 2003 г. будет опубликован окончательный текст генома человека, допускающий не более одной ошибки на 10 тыс. пар нуклеотидов. Этот год также юбилейный - исполнится 50 лет открытию Уотсоном и Криком двойной спирали ДНК.
  Текст генома человека составляется очень быстрыми темпами. В нем принимают участие многие ученые государственных и частных фирм разных стран. Например, только одна американская фирма "Celera" расшифровывает не менее 10 млн. нуклеотидных пар в сутки. Информация о геноме человека открыта и доступна для ученых всего мира. По международному соглашению в данной работе нет приоритета конкретных авторов - результаты принадлежат всему человечеству. Это - уникальный пример сотрудничества ученых для достижения действительно эпохальной цели.
  Расшифровка ДНК, создание генетической карты человека - первая задача ученых, работающих по проекту генома человека. Вторая - разбить такую карту на отдельные характерные группы. И наконец, функциональный анализ генома - третья весьма важная задача. Нужно определить, например, как работают те или иные гены в клетках организма в разные периоды его жизни.
  Наиболее важный практический результат исследований генома человека - это молекулярная медицина, т.е. генная диагностика болезней, их профилактика и генотерапия. Предполагается, что новые лекарственные препараты будут действовать на генные и белковые мишени, что будет способствовать повышению их эффективности.
  Каждый человек обладает уникальным геномом: мы отличаемся друг от друга приблизительно одной позицией нуклеотидов из тысячи. Изучение генного разнообразия может дать ключ к пониманию уникальности личности, роли наследственности в интеллектуальных способностях и чертах характера. В обозримом будущем станет возможным создание генетического паспорта каждого человека.
 Контрольные вопросы
 1. В чем заключается сущность метода Декарта научного познания?
 2. Как определяется достоверность научных знаний?
 3. Что составляет основу научной теории?
 4. Какова роль эксперимента и опыта в постижении естественно-научной истины?
 5. Чем обусловливается неточность экспериментальных результатов?
 93
 
 6. Назовите основные положения теории естественно-научного познания.
 7. Охарактеризуйте три стадии естественно-научного познания истины.
 8. Что означает относительность естественно-научных знаний?
 9. В чем заключается единство эмпирического и теоретического знаний?
 
 10. Какова роль ощущений и представлений в процессе познания?
 11. Как устанавливается научный факт?
 12. Что такое эксперимент? Чем отличается эксперимент от наблюдения?
 13. Каковы особенности современных технических средств эксперимента?
 14. Назовите основные формы мышления.
 15. На чем основывается научное предвидение?
 16. В чем заключается методология естествознания?
  17. Дайте краткую характеристику методов и приемов естественно-научных исследо
 ваний.
 18. Что такое научное открытие?
 19. Какова роль творческого воображения в научном поиске?
 20. Как строится научное доказательство?
  21. Назовите основные аргументы, определяющие практическую направленность экс
 перимента.
 22. Из каких этапов состоит эксперимент?
 23. Как повысить точность экспериментальных измерений?
 24. Какие операции включает обработка экспериментальных результатов?
  25. В чем заключается специфика современных экспериментальных и теоретических
 исследований?
 26. Назовите причины оторванности теории от эксперимента.
  27. В каких трех направлениях, важных для эксперимента, развивается лазерная тех
 ника?
 28. Для чего применяется синхротронное излучение?
 29. Какие процессы и свойства исследуются методом ядерного магнитного резонанса?
 30. Дайте краткую характеристику возможностей оптической и масс-спектроскопии.
  31. Что можно определить методами рентгеноструктурного анализа и нейтроногра
 фии?
 32. В каких материалах и когда обнаружена высокотемпературная сверхпроводимость?
 
 33. В чем специфика и преимущества химического лазера?
 34. Каковы особенности атомного лазера?
 35. Для чего применяются молекулярные пучки?
 36. На чем основана технология атомных размеров?
 37. Каковы результаты и перспективы исследований генома человека?
 38. Назовите важнейшие последние достижения современного естествознания.
 33.
 Изучать что-либо и не задумываться над выученным - абсолютно бесполезно. Задумываться над чем-либо, не изучив предмет раздумий, - опасно.
 Конфуций
 
 
  Фундаментальные принципы и законы
 *
 Атомный и нуклонный
  уровни строения материи
 *
 
 3. ФУНДАМЕНТАЛЬНЫЕ ПРИНЦИПЫ И ЗАКОНЫ
 3.1. ФИЗИКА - ФУНДАМЕНТАЛЬНАЯ ОТРАСЛЬ ЕСТЕСТВОЗНАНИЯ
  Физика - основа естественных наук. Огромное ветвистое древо естествознания медленно произрастало из натурфилософии - философии природы, представляющей собой умозрительное истолкование природных явлений и процессов. Натурфилософия зарождалась в VI - V вв. до н.э. в Древней Греции в ионийской школе и была, по существу, первой исторической формой философии, которая носила стихийно-материалистический характер. Ее основоположники - крупные мыслители древности: Фалес, Анаксимандр, Анаксимен, Гераклит Эфесский, Диоген Аполлонийский и др. - руководствовались идеями о единстве сущего, происхождении всех вещей из некоторого первоначала (воды, воздуха, огня) и о всеобщей одушевленности материи. Интерес к природе как объекту познания вызвал новый расцвет натурфилософии в эпоху Возрождения, который связан с именами известных мыслителей - Дж. Бруно, Б. Телезио, Т. Кампанеллы и др. Позднее натурфилософские взгляды на окружающий мир, основанные на объективно-идеалистической диалектике природы как живого организма, развивались немецким философом Ф. Шеллингом (1775-1854) и его последователями.
  Наряду с умозрительными и в определенной степени фантастическими представлениями натурфилософия содержала глубокие идеи диалектической трактовки природных явлений. Поступательное развитие экспериментального естествознания привело к постепенному перерастанию натурфилософии в естественно-научные знания. Таким образом, в недрах натурфилософии зарождалась
  физика - наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира.
  Физика составляет основу естествознания. В соответствии с многооб
 разием исследуемых форм материи и ее движения она подразделяется на
 7 - 3290 97
 
 физику элементарных частиц, ядерную физику, физику плазмы и т.д. На ее стыке с другими естественными науками возникли биофизика, астрофизика, геофизика, физическая химия и др.
  Слово "физика" появилось еще в древние времена и в переводе с греческого означает "природа". Натурфилософское сочинение древнегреческого философа Аристотеля (384-322 гг. до н. э.), ученика Платона, так и называется "Физика". Аристотель писал: "Наука о природе изучает преимущественно тела и величины, их свойства и виды движений, а кроме того, начала такого рода бытия".
  "Высшая задача физики состоит в открытии наиболее общих элементарных законов, из которых можно было бы логически вывести картину мира", - так считал Эйнштейн. Одна из главных задач физики - выявление самого простого и самого общего в природе. Под самым простым обычно принято понимать первичные объекты: молекулы, атомы, элементарные частицы, поля, а под самым общим - движение, пространство и время, энергию и т.п. Физика изучает разнообразные явления и объекты природы, и при этом сложное сводится к простому, конкретное - к общему. Так устанавливаются универсальные законы, справедливость которых подтверждается не только в земных условиях и в околоземном пространстве, но и во всей Вселенной. В этом заключается один из существенных признаков физики как фундаментальной науки. Физика занимает особое место среди естественных наук, и ее принято считать лидером естествознания.
  К настоящему времени известно множество естественных наук, отражающих различные свойства объектов природы. Их классификация и иерархия всегда интересовали ученых. Одну из первых классификаций провел в начале XIX в. выдающийся французский физик Андре Ампер (1775-1836). Уже тогда общее число естественных наук насчитывалось более 200. Естественно-научные знания он представил в виде единой системы, состоящей из различных по характеру идей и экспериментальных сведений. В такой системе физика располагалась на первом уровне как наука наиболее фундаментальная, химия - на втором, как бы основывающаяся на физике, и т.д.
  Позднее - в середине XIX в., - изучая историю развития естествознания, немецкий химик Ф. Кекуле (1829-1896) предложил свою иерархию естественных наук в форме четырех последовательных ступеней: механика, физика, химия, биология. В ней рассматривались молекулярная физика и термодинамика как механика молекул, химия - как физика атомов, а биология - как химия белков или белковых систем.
  Вопросы иерархии, классификации и взаимосвязи естественных наук обсуждаются и по сей день. При этом рассматриваются разные точки зрения. Например, одна из них - все химические явления, строение вещества и его превращение можно объяснить на основании физических зна-98
 
 ний - ничего специфического в химии нет. Другая точка зрения - каждый вид материи и каждая форма материальной организации (физическая, химическая, биологическая) настолько специфичны и обособлены, что между ними нет прямых связей. Конечно, такие полярные точки зрения далеки от истины. Вполне очевидно одно - несмотря на то, что физика - фундаментальная отрасль естествознания, каждая из естественных наук при одной и той же общей задаче изучения природы имеет свой объект исследования и базируется на своих законах, не сводимых к законам других отраслей науки. Сочетание всесторонних знаний, накопленных в течение длительного времени в отдельных отраслях естествознания, способствует дальнейшему его развитию.
  Возвращаясь к мысли, изложенной в начале этого параграфа, можно сказать: натурфилософия породила физику. Однако так же определенно можно утверждать и другое: физика выросла из потребностей техники (например, развитие механики у древних греков было вызвано запросами строительной и военной техники того времени). Техника, в свою очередь, определяет направление физических исследований (так, задача создания наиболее экономичных тепловых двигателей стимулировала бурное развитие термодинамики). С другой стороны, от развития физики зависит технический уровень производства. Физика - основная база для создания наукоемких технологий и новых технических средств производства.
  Физика тесно связана и с философией. Такие крупные открытия в области физики, как закон сохранения и превращения энергии, второе начало термодинамики, соотношение неопределенностей и др., являлись и являются ареной острой борьбы между сторонниками разных философских течений. Научные открытия служат реальной почвой для многих философских мыслей. Изучение открытий и их философское, концептуальное обобщение играют большую роль в формировании естественно-научного мировоззрения.
  Основные этапы развития физики. Всю историю развития физики можно условно разделить на три основных этапа:
 1) доклассической физики;
 2) классической физики;
 3) современной физики.
  Первый этап развития физики - этап доклассической физики - иногда называют донаучным. Однако такое название нельзя считать обоснованным: фундаментальные зерна физики и естествознания в целом были посеяны еще в глубокой древности. Этот этап - самый длительный: он охватывает период от времени Аристотеля (IV в. до н.э.) до конца XVI в.
  Начало второго этапа - этапа классической физики - связывают с
 работами итальянского ученого Галилео Галилея, одного из основателей
 точного естествознания, и трудами английского математика, механика,
  99
 
 астронома и физика Исаака Ньютона, основоположника классической физики. Второй этап длился около трех веков до конца XIX в.
  К началу XX в. получены экспериментальные результаты, трудно объяснимые в рамках классических знаний. Поэтому был предложен совершенно новый подход - квантовый, основанный на дискретной концепции. Квантовую гипотезу впервые ввел в 1900 г. немецкий физик Макс Планк, вошедший в историю развития физики как один из основоположников квантовой теории. С введением квантовой концепции начинается третий этап развития физики - этап современной физики, включающий не только квантовые, но и классические представления.
  Этап доклассической физики открывает геоцентрическая система мировых сфер Аристотеля, которая родилась на подготовленной его предшественниками идейной почве. Переход от эгоцентризма - отношения к миру, характеризующегося сосредоточенностью на своем индивидуальном "я", к геоцентризму - первый и, пожалуй, самый трудный шаг на пути зарождения ростков естествознания. Непосредственно видимая полусфера неба, ограниченная местным горизонтом, дополнялась аналогичной невидимой полусферой до полной небесной сферы. Мир стал более завершенным, но оставался ограниченным небесной сферой. Соответственно, и сама Земля, противопоставленная остальной (небесной) сферической Вселенной как постоянно занимающая в ней особое, центральное положение и абсолютно неподвижная, стала считаться сферической. Пришлось признать не только возможность существования антиподов - обитателей диаметрально противоположных частей земного шара, но и принципиальную равноправность всех земных обитателей мира. Такие представления, носившие в основном умозрительный характер, подтвердились гораздо позднее - в эпоху первых кругосветных путешествий и великих географических открытий, т. е. на рубеже XV и XVI вв., когда само геоцентрическое учение Аристотеля с канонической системой идеальных равномерно вращающихся небесных сфер, сочлененных друг с другом своими осями вращения, с принципиально различной физикой или механикой для земных и небесных тел, доживало свои последние годы.
  Почти полторы тысячи лет отделяет завершенную геоцентрическую систему греческого астронома Клавдия Птолемея (ок. 90 - 160) от достаточно совершенной гелиоцентрической системы польского математика и астронома Николая Коперника. В центре гелиоцентрической системы находится не Земля, а Солнце. Вершина гелиоцентрической системы - законы движения планет, открытые немецким астрономом Иога-ном Кеплером, одним из творцов естествознания Нового времени.
  Астрономические открытия Галилео Галилея, его физические эксперименты и фундаментальные законы механики, сформулированные Исааком Ньютоном, положили начало этапу классической физики, который нельзя отделить четкой границей от первого этапа. Для физики и ес-
 100
 
 тествознания в целом характерно поступательное развитие: законы Кеплера - венец гелиоцентрической системы с весьма длительной, начавшейся еще в древние времена историей; законам Ньютона предшествовали законы Кеплера и труды Галилея; Кеплер открыл законы движения планет в итоге логически и исторически естественного перехода от геоцентризма к гелиоцентризму, но не без эвристических идей аристотелевской механики. Механика Аристотеля разделялась на земную и небесную, т.е. не обладала надлежащим принципиальным единством: аристотелевское взаимное противопоставление Земли и Неба сопровождалось принципиальной противоположностью относящихся к ним законов механики, которая тем самым оказалась в целом внутренне противоречивой, несовершенной. Галилей опроверг аристотелевское противопоставление Земли и Неба. Он предложил представление Аристотеля об инерции, характеризующее равномерное движение небесных тел вокруг Земли, применять для земных тел при их свободном движении в горизонтальном направлении.
  Кеплер и Галилей пришли к своим кинематическим законам, предопределившим принципиально единую для земных и небесных тел механику Ньютона. Законы Кеплера и закон всемирного тяготения Ньютона послужили основой для открытия новых планет. Так, по результатам наблюдений отклонений в движении планеты Уран, сделанных в 1781 г. английским астрономом и оптиком Уильямом Гершелем (1738-1822), английский астроном и математик Джон Адаме (1819-1892) и французский астроном Урбен Леверье (1811-1877) независимо друг от друга и почти одновременно теоретически предсказали существование заурано-вой планеты, которую обнаружил в 1846 г. немецкий астроном Иоганн Галле (1812-1910). Она называется Нептун. В 1915 г. американский астроном Персиваль Ловелл (1855-1916) рассчитал и организовал поиск еще одной планеты. Ее обнаружил в 1930 г. молодой американский любитель астрономии Клайд Томбо. Эта планета получила название Плутон.
  Стремительными темпами развивалась не только классическая механика Ньютона. Этап классической физики характеризуется крупными достижениями и в других отраслях: термодинамике, молекулярной физике, оптике, электричестве, магнетизме и т.п. Назовем важнейшие из них:
 - установлены опытные газовые законы;
 - предложено уравнение кинетической теории газов;
  - сформулирован принцип равномерного распределения энергии по
 степеням свободы, первое и второе начала термодинамики;
 - открыты законы Кулона, Ома и электромагнитной индукции;
 - разработана электромагнитная теория;
  - явления интерференции, дифракции и поляризации света получи
 ли волновое истолкование;
 - сформулированы законы поглощения и рассеяния света.
 101
 
  Конечно, можно назвать и другие не менее важные достижения, среди которых особое место занимает электромагнитная теория, разработанная выдающимся английским физиком Дж. Максвеллом (1831-1879), создателем классической электродинамики, одним из основоположников статистической физики. Он установил, кроме того, статистическое распределение молекул по скоростям, названное его именем. Теория электромагнитного поля (уравнения Максвелла) объяснила многие известные к тому времени явления и предсказала электромагнитную природу света. С электромагнитной теорией Максвелла вряд ли можно поставить рядом другую более значительную в классической физике. Однако и эта теория оказалась не всесильной.
  В конце XX в. при изучении спектра излучения абсолютно черного тела была установлена закономерность распределения энергии. Полученные кривые распределения имели характерный максимум, который по мере повышения температуры смещался в сторону более коротких волн. Такие результаты эксперимента не удалось объяснить в рамках классической электродинамики Максвелла. Согласующееся с экспериментом объяснение предложил в 1900 г. Макс Планк. Для чего ему пришлось отказаться от общепринятого положения классической физики о том, что энергия любой системы изменяется только непрерывно, т.е. принимает любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе атомные осцилляторы излучают энергию не непрерывно, а определенными порциями - квантами, причем энергия кванта пропорциональна частоте.
  Характерная особенность этапа современной физики заключается в том, что наряду с классическими развиваются квантовые представления, на основании квантовой механики объясняются многие микропроцессы, происходящие в пределах атома, ядра и элементарных частиц - появились новые отрасли современной физики: квантовая электродинамика, квантовая теория твердого тела, квантовая оптика и многие другие.
  В одной из своих статей М. Планк писал о том, как во времена его молодости (примерно в 1880 г.) один уважаемый профессор не советовал заниматься физикой, полагая, что в физике осталось только стирать пыль с существующих физических приборов, так как главное уже сделано. Сейчас очевидно: профессор в своих прогнозах ошибался - XX столетие принесло немало великих открытий в физике, определивших многие перспективные направления развития разных отраслей естествознания.
  В формировании квантово-механических представлений важную роль сыграла квантовая теория фотоэффекта, предложенная А. Эйнштейном в 1905 г. Именно за эту работу и труды в области математической фи-102
 
 зики, а не за теорию относительности, ему в 1921 г. была присуждена Нобелевская премия по физике.
  В развитие современной физики существенный вклад внесли многие выдающиеся ученые, среди которых следует назвать датского физика Нильса Бора (1885 - 1962), создавшего квантовую теорию атома, немецкого физика-теоретика Вернера Гейзенберга (1901-1976), сформулировавшего принцип неопределенности и предложившего матричный вариант квантовой механики, австрийского физика-теоретика Эрвина Шредингера (1887- 1961), разработавшего волновую механику и предложившего ее основное уравнение (уравнение Шредингера), английского физика Поля Дирака (1902 - 1984), разработавшего релятивистскую теорию движения электрона и на ее основании предсказавшего существование позитрона, английского физика Эрнеста Резерфорда (1871 - 1937), создавшего учение о радиоактивности и строении атома, и многих других.
  В первые десятилетия XX в. исследовалась радиоактивность и выдвигались идеи о строении атомного ядра. В 1938 г. сделано важное открытие: немецкие радиохимики О. Ган и Ф. Штрассман обнаружили деление ядер урана при облучении их нейтронами. Это открытие способствовало бурному развитию ядерной физики, созданию ядерного оружия и рождению атомной энергетики.
  В исследовании ядерных процессов большую роль играют детекторы частиц, в том числе и черенковский счетчик, действие которого основано на Черенкова-Вавилова излучении света, которое возникает при движении в веществе заряженных частиц со скоростью, превосходящей фазовую скорость света в нем. Это излучение было обнаружено нашим соотечественником физиком П.А. Черенковым (1904-1990), лауреатом Нобелевской премии 1958 г., под руководством академика СИ. Вавилова (1891-1951), основателя научной школы физической оптики.
  Одно из крупнейших достижений физики XX в. -- это, безусловно, создание в 1947 г. транзистора выдающимися американскими физиками Д. Бардиным, Д. Браттейном и У. Шокли, удостоенными в 1956 г. Нобелевской премии по физике. С развитием физики полупроводников и созданием транзистора зарождалась новая технология - полупроводниковая, а вместе с ней и перспективная, бурно развивающаяся отрасль естествознания - микроэлектроника. В 1958 г. собрана первая интегральная схема в виде пластины из монокристалла кремния площадью несколько квадратных сантиметров, на которой располагались два транзистора и RC-цепи. Современный микропроцессор размером 1,8 см содержит около 8 млн. транзисторов. Если размеры элементов первых транзисторов составляли доли миллиметра, то сегодня они равны 0,35 мкм. Это современный технологический уровень. В последнее время разрабатывается технология формирования элементов нанометровых размеров.
 103
 
  Создание квантовых генераторов на основе вынужденного излучения атомов и молекул - еще одно важнейшее достижение физики XX в. Первый квантовый генератор на молекулах аммиака - источник электромагнитного излучения в СВЧ-диапазоне (мазер) - разработан в 1954 г. советскими физиками Н.Г. Басовым, A.M. Прохоровым и американским ученым Ч. Таунсом. В 1964 г. за эту работу им присуждена Нобелевская премия по физике. К настоящему времени разработано много модификаций квантовых генераторов, в том числе и оптических квантовых генераторов, называемых лазерами, получивших широкое практическое применение. Появились уникальные лазеры - химические, атомные и др., которые открывают перспективные направления лазерных технологий.
  Высокотемпературная сверхпроводимость, открытая в 1986 г. немецким физиком Г. Беднорцем и швейцарским ученым А. Мюллером, удостоенными Нобелевской премии 1987 г., - вне всякого сомнения выдающееся достижение современного естествознания.
  Созданию единой теории фундаментальных взаимодействий, управлению термоядерным синтезом - этим и многим другим проблемам современной физики уделяется большое внимание, и в их решении принимают участие ученые многих стран.
 3.2. МАТЕРИЯ И ДВИЖЕНИЕ, ВРЕМЯ И ПРОСТРАНСТВО
  Одна из важнейших задач естествознания - создание естественно-научной картины мира в виде целостной упорядоченной системы. Для ее решения используются общие и абстрактные понятия: материя, движение, время и пространство.
  Материя - это все то, что прямо или косвенно действует на органы чувств человека и другие объекты. Окружающий нас мир, все существующее вокруг нас представляет собой материю, которая тождественна реальности. Неотъемлемое свойство материи - движение. Без движения нет материи, и наоборот. Движение материи - любые изменения, происходящие с материальными объектами в результате их взаимодействий. Материя не существует в бесформенном состоянии - из нее образуется сложная иерархическая система материальных объектов различных масштабов и сложности.
  Отличительная особенность естественно-научного познания заключается в том, что для естествоиспытателей представляет интерес не материя или движение вообще, а конкретные виды материи и движения, свойства материальных объектов, их характеристики, которые можно измерить с помощью приборов. В современном естествознании различают три вида материи: вещество, физическое поле и физический вакуум. 104
 
  Вещество - основной вид материи, обладающей массой. К вещественным объектам относятся элементарные частицы, атомы, молекулы и многочисленные образованные из них материальные объекты. В химии вещества подразделяются на простые (с атомами одного химического элемента) и сложные - химические соединения. Свойства вещества зависят от внешних условий и интенсивности взаимодействия атомов и молекул, что и обусловливает различные агрегатные состояния вещества: твердое, жидкое и газообразное. При сравнительно высокой температуре образуется плазма. Переход вещества из одного состояния в другое можно рассматривать как один из видов движения материи.
  В природе наблюдаются различные виды движения материи, которые можно классифицировать с учетом изменений свойств материальных объектов и их воздействий на окружающий мир. Механическое движение (относительное перемещение тел), колебательное и волновое движение, распространение и изменение различных полей, тепловое (хаотическое) движение атомов и молекул, равновесные и неравновесные процессы в макросистемах, фазовые переходы между агрегатными состояниями (плавление, парообразование и др.), радиоактивный распад, химические и ядерные реакции, развитие живых организмов и биосферы, эволюция звезд, галактик и Вселенной в целом - все это примеры многообразных видов движения материи.
  Физическое поле - особый вид материи, обеспечивающий физическое взаимодействие материальных объектов и их систем. К физическим полям относятся электромагнитное и гравитационное поля, поле ядерных сил, а также волновые (квантовые) поля, соответствующие различным частицам (например, электрон-позитронное поле). Источником физических полей являются частицы (например, для электромагнитного поля - заряженные частицы). Созданные частицами физические поля переносят с конечной скоростью взаимодействие между ними. В квантовой теории взаимодействие обусловливается обменом квантами поля между частицами.
  Физический вакуум - низшее энергетическое состояние квантового поля. Этот термин введен в квантовой теории поля для объяснения некоторых микропроцессов. Среднее число частиц - квантов поля - в вакууме равно нулю, однако в нем могут рождаться виртуальные частицы - частицы в промежуточных состояниях, существующие короткое время. Виртуальные частицы влияют на физические процессы. В физическом вакууме могут рождаться пары частица-античастица разных типов. При достаточно большой концентрации энергии вакуум взаимодействует с реальными частицами, что подтверждается экспериментом.
 105
 
 Предполагается, что из физического вакуума, находящегося в возбужденном состоянии, родилась Вселенная.
  Всеобщими универсальными формами существования и движения материи принято считать время и пространство. Движение материальных объектов и различные реальные процессы происходят в пространстве и во времени. Особенность естественно-научного представления об этих понятиях заключается в том, что время и пространство можно охарактеризовать количественно с помощью приборов.
  Время выражает порядок смены физических состояний и является объективной характеристикой любого процесса или явления. Время - это то, что можно измерить с помощью многих приборов. Принцип работы таких приборов основан на разных физических процессах, среди которых наиболее удобны периодические процессы: вращение Земли вокруг своей оси, электромагнитное излучение возбужденных атомов и др. Многие крупные достижения в естествознании связаны с разработкой более точных приборов для определения времени. Существующие сегодня эталоны позволяют измерить время с очень высокой точностью - относительная погрешность измерений составляет менее 10-11.
  Временная характеристика реальных процессов основывается на постулате времени: одинаковые во всех отношениях явления происходят за одинаковое время. Хотя постулат времени кажется естественным и очевидным, его истинность все же относительна, так как его нельзя проверить на опыте даже с помощью самых совершенных часов, поскольку, во-первых, они характеризуются своей точностью, и, во-вторых, невозможно создать принципиально одинаковые условия в природе в разное время. Вместе с тем длительная практика естественно-научных исследований позволяет не сомневаться в справедливости постулата времени в пределах той точности, которая достигнута в данный момент времени.
  При создании классической механики около 300 лет назад И. Ньютон ввел понятие абсолютного, или истинного, математического времени, которое течет всегда и везде равномерно, и относительного времени как меры продолжительности, употребляемой в обыденной жизни и означающей определенный интервал времени: час, день, месяц и т.д.
  В современном представлении время всегда относительно. Из теории относительности следует, что при скорости, близкой к скорости света в вакууме, время замедляется - происходит релятивистское замедление времени, и что сильное поле тяготения приводит к гравитационному замедлению времени. В обычных земных условиях такие эффекты чрезвычайно малы.
  Важнейшее свойство времени заключается в его необратимости. Прошлое во всех деталях и подробностях нельзя воспроизвести в реальной жизни - прошлое забывается. Необратимость времени обусловлена 106
 
 сложным взаимодействием множества природных систем, в том числе атомов и молекул, и символически обозначается стрелой времени, "летящей" всегда из прошлого в будущее. Необратимость реальных процессов в термодинамике связывают с хаотичным движением атомов и молекул.
  Понятие пространства гораздо сложнее понятия времени. В отличие от одномерного времени, реальное пространство трехмерно, т.е. имеет три измерения. В трехмерном пространстве существуют атомы и планетные системы, выполняются фундаментальные законы природы. Однако выдвигаются гипотезы, согласно которым пространство нашей Вселенной имеет много измерений, хотя из них наши органы чувств способны ощущать только три.
  Первые представления о пространстве возникли из очевидного существования в природе твердых тел, занимающих определенный объем. Исходя из него, можно дать определение: пространство выражает порядок сосуществования физических тел. Завершенная теория пространства - геометрия Евклида - создана более 2000 лет назад и до сих пор считается образцом научной теории.
  По аналогии с абсолютным временем И. Ньютон ввел понятие абсолютного пространства, которое существует независимо от находящихся в нем физических объектов и может быть совершенно пустым, являясь как бы мировой ареной, где разыгрываются физические процессы. Свойства пространства определяются геометрией Евклида. Именно такое представление о пространстве лежит в основе практической деятельности людей. Однако пустое пространство идеально, в то время как реальный окружающий нас мир заполнен различными материальными объектами. Идеальное пространство без материальных объектов лишено смысла даже, например, при описании механического движения тела, для которого необходимо указать другое тело в качестве системы отсчета. Механическое движение тел относительно. Абсолютного движения, как и абсолютного покоя тел, в природе не существует. Пространство, как и время, относительно.
  Специальная теория относительности объединила пространство и время в единый континуум пространство - время. Основанием для такого объединения служит принцип относительности и постулат о предельной скорости передачи взаимодействий материальных объектов - скорости света в вакууме, примерно равной 300 000 км/с. Из данной теории следует относительность одновременности двух событий, происшедших в разных точках пространства, а также относительность измерений длин и интервалов времени, произведенных в разных системах отсчета, движущихся относительно друг друга.
  В соответствии с общей теорией относительности свойства пространства - времени зависят от наличия материальных объектов. Любой ма-
 107
 
 термальный объект искривляет пространство, которое можно описать не геометрией Евклида, а сферической геометрией Римана или гиперболической геометрией Лобачевского. Предполагается, что вокруг массивного тела при очень большой плотности вещества искривление становится настолько существенным, что пространство - время как бы "замыкается" локально само на себя, отделяя данное тело от остальной Вселенной и образуя черную дыру, которая поглощает материальные объекты и электромагнитное излучение. На поверхности черной дыры для внешнего наблюдения время как бы останавливается. Предполагается, что в центре нашей Галактики находится огромная черная дыра. Однако есть и другая точка зрения. Академик Российской академии наук А. А. Логунов (р. 1926) утверждает, что никакого искривления пространства-времени нет, а происходит искривление траектории движения объектов, обусловленное изменением гравитационного поля. По его мнению, наблюдаемое красное смещение в спектре излучения отдаленных галактик можно объяснить не расширением Вселенной, а переходом посылаемого ими излучения от среды с сильным гравитационным полем в среду со слабым гравитационным полем, в котором находится наблюдатель на Земле.
 3.3. КОНЦЕПЦИЯ АТОМИЗМА. ДИСКРЕТНОСТЬ И НЕПРЕРЫВНОСТЬ МАТЕРИИ
  Строение материи интересует естествоиспытателей еще с античных времен. В Древней Греции обсуждались две противоположные гипотезы строения материальных тел. Одну из них предложил древнегреческий мыслитель Аристотель (384-322 до н.э.). Она заключается в том, что вещество делится на более мелкие частицы и нет предела его делимости. По существу, эта гипотеза означает непрерывность вещества. Другая гипотеза выдвинута древнегреческим философом Левкиппом (V в. до н.э.) и развита его учеником Демокритом, а затем его последователем философом-материалистом Эпикуром (341-270 до н.э.). В ней предполагалось, что вещество состоит из мельчайших частиц - атомов. Это и есть концепция атомизма - концепция дискретного квантового строения материи. По Демокриту, в природе существуют только атомы и пустота. Атомы - неделимые, вечные, неразрушимые элементы материи.
  Реальность существования атомов вплоть до конца XIX в. подвергалась сомнению. В то время объяснения многих химических реакций не нуждались в понятии атома. Для них, как и для количественного описания движения частиц, вводилось другое понятие - молекула. Существование молекул экспериментально доказал французский физик Жан Пер-рен (1870-1942) при наблюдении броуновского движения. Молекула - наименьшая частица вещества, обладающая его основными хими-108
 
 ческими свойствами и состоящая из атомов, соединенных между собой химическими связями. Число атомов в молекуле - от двух (Н2, О2, HF, КСl и др.) до сотен, тысяч и миллионов (витамины, гормоны, белки, нуклеиновые кислоты).
  Неделимость атома как составной части молекулы долгое время не вызывала сомнений. Однако к началу XX в. физические опыты показали, что атомы состоят из более мелких частиц. Так, в 1897 г. английский физик Д. Томсон (1856-1940) открыл электрон - составную часть атома. В следующем году он определил отношение его заряда к массе, а в 1903 г. предложил одну из первых моделей атома.
  Атомы химических элементов по сравнению с наблюдаемыми телами очень малы: их размер - от 10-10 до 10-9 м, а масса - 10-27 - 10-25 кг. Они имеют сложную структуру и состоят из ядер и электронов. В результате дальнейших исследований выяснилось, что и ядра атомов состоят из протонов и нейтронов, т.е. имеют дискретное строение. Это означает, что концепция атомизма для ядер характеризует структуру материи на ее ну-клонном уровне.
  В настоящее время принято считать, что не только вещество, но и другие виды материи - физическое поле и физический вакуум - имеют дискретную структуру. Даже пространство и время, согласно квантовой теории поля, в сверхмалых масштабах образуют хаотически меняющуюся пространственно-временную среду с ячейками размером 10-35 м и временем 10-43 с. Квантовые ячейки настолько малы, что их можно не учитывать при описании свойств атомов, нуклонов и т.п., считая пространство и время непрерывными.
  Основной вид материи - вещество, находящееся в твердом и жидком состояниях, - воспринимается обычно как непрерывная, сплошная среда. Для анализа и описания свойств такого вещества в большинстве случаев учитывается только его непрерывность. Однако то же вещество при объяснении тепловых явлений, химических связей, электромагнитного излучения и т.п. рассматривается как дискретная среда, состоящая из взаимодействующих между собой атомов и молекул.
  Дискретность и непрерывность присущи и другому виду материи - физическому полю. Гравитационное, электрическое, магнитное и другие поля при решении многих физических задач принято считать непрерывными. Однако в квантовой теории поля предполагается, что физические поля дискретны.
  Для одних и тех же видов материи характерна и непрерывность, и дискретность. Для классического описания природных явлений и свойств материальных объектов достаточно учитывать непрерывные свойства
 109
 
 материи, а для характеристики различных микропроцессов - ее дискретные свойства. Непрерывность и дискретность - неотъемлемые свойства материи.
 3.4. ФУНДАМЕНТАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ
  Виды фундаментальных взаимодействий. Огромное разнообразие природных систем и структур, их особенности и динамизм обусловливаются взаимодействием материальных объектов, т.е. их взаимным действием друг на друга. Именно взаимодействие - основная причина движения материи, поэтому взаимодействие, как и движение, универсально, т.е. присуще всем материальным объектам вне зависимости от их природы происхождения и системной организации. Особенности различных взаимодействий определяют условия существования и специфику свойств материальных объектов.
  Взаимодействующие объекты обмениваются энергией и импульсом - основными характеристиками их движения. В классической физике взаимодействие определяется силой, с которой один материальный объект действует на другой.
  Долгое время считалось, что взаимодействие материальных объектов, находящихся даже на большом расстоянии друг от друга, передается через пустое пространство мгновенно. Такое утверждение соответствует концепции дальнодействия. К настоящему времени экспериментально подтверждена другая концепция - концепция близкодействия: взаимодействия передаются посредством физических полей с конечной скоростью, не превышающей скорости света в вакууме. Эта, по существу, полевая концепция в квантовой теории поля дополняется утверждением: при любом взаимодействии происходит обмен особыми частицами - квантами поля.
  Наблюдаемые в природе взаимодействия материальных объектов и систем весьма разнообразны. Однако, как показали физические исследования, все взаимодействия можно отнести к четырем видам фундаментальных взаимодействий: гравитационному, электромагнитному, сильному и слабому.
  Гравитационное взаимодействие проявляется во взаимном притяжении любых материальных объектов, имеющих массу. Оно передается посредством гравитационного поля и определяется фундаментальным законом природы - законом всемирного тяготения, сформулированным И. Ньютоном:
  между двумя материальными точками массой т, и т2, расположенными на расстоянии r друг от друга, действует сила F, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними:
 110
 
 
 где G - гравитационная постоянная.
  Законом всемирного тяготения описываются падение материальных тел в поле Земли, движение планет Солнечной системы, звезд и т.п.
  В соответствии с квантовой теорией поля переносчиками гравитационного взаимодействия являются гравитоны - частицы с нулевой массой, кванты гравитационного поля.
  Электромагнитное взаимодействие обусловлено электрическими зарядами и передается посредством электрического и магнитного полей. Электрическое поле возникает при наличии электрических зарядов, а магнитное - при их движении. Изменяющееся магнитное поле порождает переменное электрическое поле, которое, в свою очередь, является источником переменного магнитного поля.
  Благодаря электромагнитному взаимодействию существуют атомы и молекулы, происходят химические превращения вещества. Различные агрегатные состояния вещества, трение, упругость и т.п. определяются силами межмолекулярного взаимодействия, электромагнитными по своей природе. Электромагнитное взаимодействие описывается фундаментальными законами электростатики и электродинамики: законом Кулона, законом Ампера и др., и в обобщенном виде - электромагнитной теорией Максвелла, связывающей электрическое и магнитное поля. Получение, преобразование и применение электрического и магнитного полей, а также электрического тока служат основой для создания разнообразных современных технических средств: электроприборов, радиоприемников, телевизоров, осветительных и нагревательных приборов, компьютеров и т.д.
  Согласно квантовой электродинамике, переносчиками электромагнитного взаимодействия являются фотоны - кванты электромагнитного поля с нулевой массой. Во многих случаях они регистрируются приборами в виде электромагнитной волны разной длины. Например, воспринимаемый невооруженным глазом видимый свет, посредством которого отражается основная доля (около 90%) информации об окружающем мире, представляет собой электромагнитную волну в довольно узком диапазоне длин волн (примерно 0,4-0,8 мкм), соответствующем максимуму солнечного излучения.
  Сильное взаимодействие обеспечивает связь нуклонов в ядре. Оно определяется ядерными силами, обладающими зарядовой независимостью, короткодействием, насыщением и другими свойствами. Сильное взаимодействие отвечает за стабильность атомных ядер. Чем сильнее взаимодействие нуклонов в ядре, тем стабильнее ядро, тем больше его
 111
 
 удельная энергия связи. С увеличением числа нуклонов в ядре и, следовательно, размера ядра удельная энергия связи уменьшается и ядро может распадаться, что и происходит с ядрами элементов, находящихся в конце таблицы Менделеева.
  Предполагается, что сильное взаимодействие передается глюонами - частицами, "склеивающими" кварки, входящие в состав протонов, нейтронов и других частиц.
  В слабом взаимодействии участвуют все элементарные частицы, кроме фотона. Оно обусловливает большинство распадов элементарных частиц, взаимодействие нейтрино с веществом и другие процессы. Слабое взаимодействие проявляется главным образом в процессах бета-распада атомных ядер многих изотопов, свободных нейтронов и т.д. Принято считать, что переносчиками слабого взаимодействия являются вионы - частицы с массой, примерно в 100 раз большей массы протонов и нейтронов. Вионы обнаружены в 1983 г.
  Для количественной характеристики фундаментальных взаимодействий обычно используют безразмерную константу взаимодействия, определяющую величину взаимодействия, и радиус действия (табл. 3.1).
 
  Из таблицы видно, что гравитационное взаимодействие гораздо слабее других фундаментальных взаимодействий. Радиус действия его неограничен. Оно не играет существенной роли в микропроцессах и в то же время является доминирующим для материальных объектов с большими массами (планет, звезд, галактик и т.п.). Электромагнитное взаимодействие гораздо сильнее гравитационного, хотя его радиус действия также неограничен. Для сильного и слабого взаимодействий характерно коротко-действие. Сильное взаимодействие проявляется только в пределах размеров ядра (10-15 м), а слабое - на гораздо меньшем расстоянии - 10-18 м.
  В результате экспериментальных исследований взаимодействий элементарных частиц в 1983 г. было обнаружено, что при больших энергиях столкновения протонов - около 100 ГэВ (1 ГэВ = 109 эВ - слабое и электромагнитное взаимодействия не различаются - их можно рассматривать как единое электрослабое взаимодействие. Такое объединение двух фундаментальных взаимодействий - электромагнитного и слабо-112
 
 го - было теоретически предсказано в 60-70-х годах XX в. американскими физиками С. Вайнбергом (1933-1996) и Ш. Глэшоу (р. 1932) и пакистанским физиком А. Саламом (р. 1926 г.), удостоенными Нобелевской премии по физике 1979 г. Существенный вклад в развитие теории электрослабого взаимодействия внесли нидерландские учение Г. Хуфт и М. Вельтман, лауреаты Нобелевской премии по физике 1999 г.
  Одна из важнейших задач современного естествознания - создание единой теории фундаментальных взаимодействий, объединяющей не только электромагнитное и слабое, но и сильное, и слабое взаимодействия. Решение такой довольно сложной задачи потребует синтеза естественно-научных знаний о материальных объектах разных масштабов - от элементарных частиц до Вселенной. Единая теория фундаментальных взаимодействий обеспечит концептуальное обобщение знаний об окружающем мире.
  Предполагается, что при относительно больших энергиях взаимодействия частиц (до 1019 ГэВ) или при чрезвычайно высокой температуре материи все четыре фундаментальных взаимодействия характеризуются одинаковой силой, т.е. представляют собой одно взаимодействие, определяемое "суперсилой". Возможно, такие экстремальные условия существовали в начальный момент зарождения Вселенной. При расширении Вселенной и быстром охлаждении образовавшегося вещества единое взаимодействие разделилось на четыре принципиально отличающиеся друг от друга взаимодействия, определившие структурную организацию материи.
  Структурная организация материи. Важнейшее свойство материи - ее структурная и системная организация, которая выражает упорядоченность существования материи в виде огромного разнообразия материальных объектов различных масштабов и уровней, связанных между собой единой системой иерархии. Непосредственно наблюдаемые нами тела состоят из молекул, молекулы - из атомов, атомы - из ядер и электронов, атомные ядра - из нуклонов, нуклоны - из кварков. Сегодня принято считать, что электроны и гипотетические частицы кварки не содержат более мелких частиц.
  С биологической точки зрения самая крупная живая система - биосфера - состоит из биоценозов, содержащих множество популяций живых организмов различных видов, а популяции образуют отдельные особи, живой организм которых состоит из клеток со сложной структурой, включающих ядро, мембрану и другие составные части.
  В современном естествознании множество материальных систем принято условно делить на микромир, макромир и мегамир. К микромиру относятся молекулы, атомы и элементарные частицы. Материальные объекты, состоящие из огромного числа атомов и молекул, образуют мак-
 8-3290 113
 
 ромир. Самую крупную систему материальных объектов составляет мегамир - мир планет, звезд, галактик и Вселенной.
  Материальные системы микро-, макро- и мегамира различаются между собой размерами, характером доминирующих процессов и законами, которым они подчиняются. Пространственные масштабы и размеры (в метрах с точностью до одного порядка чисел) некоторых материальных объектов представлены ниже.
 
  Отношение самого большого размера к самому малому, составляющее сегодня 44 порядка, возрастало и будет возрастать по мере накопления естественно-научных знаний об окружающем мире. "Мир наш - только школа, где мы учимся познавать", - справедливо заметил французский философ М. Монтень (1533 - 1592).
  Важнейшая концепция современного естествознания заключается в материальном единстве всех систем микро-, макро- и мегамира. Можно говорить о единой материальной основе происхождения всех материальных систем на разных стадиях эволюции Вселенной.
  Материальные объекты микро-, макро- и мегамира отличаются друг от друга не только своими размерами, но и другими количественными характеристиками. Так, один моль любого вещества (характерное количество вещества для макрообъектов, составляющее, например, для воды 18 г) содержит огромное число молекул или атомов, называемое постоянной Авогадро и примерно равное 6 • 1023 моль-1. Солнце состоит из колоссального числа частиц: 8 • 1056 ядер атомов водорода и 9 • 1055 ядер атомов гелия.
  Свойства и особенности материальных объектов микро-, макро- и мегамира описываются разными теориями, принципами и законами. При объяснении процессов в микромире используются принципы и теории квантовой механики, квантовой статистики и т.п. Изучение материаль-
 114
 
 ных объектов макросистем основано на законах и теориях классической механики Ньютона, термодинамики и статической физики, классической электродинамики Максвелла. Вместе с тем многие понятия и концепции (энергия, импульс и др.), введенные в классической физике для описания свойств материальных объектов макромира, с успехом используются для объяснения процессов в микро- и мегамире. Движение планет Солнечной системы описывается законом всемирного тяготения и законами Кеплера. Происхождение и эволюция Вселенной объясняются на основании комплекса естественно-научных знаний, включающих физику элементарных частиц, квантовую теорию поля, теорию относительности и т.п.
  Материальные объекты образуют целостную систему лишь в том случае, если энергия связи между ними больше кинетической энергии каждого из них. Энергия связи - это та энергия, которую необходимо затратить, чтобы полностью "растащить" систему на отдельные ее составляющие. Величина энергии связи природных систем на различных уровнях организации материи зависит от вида взаимодействия и характера сил, объединяющих материальные объекты в систему. Например, существование в течение миллиардов лет звезд, в том числе и Солнца, обусловливается устойчивым равновесием между энергией взаимного гравитационного притяжения частиц, стремящегося сжать вещество звезды, и энергией их теплового движения, приводящего к его рассеиванию. Объединяющую роль в атомах и молекулах играет электромагнитное взаимодействие.
  Существенное различие между материальными объектами микро- и
 макромира заключается в тождественности микрочастиц и индивидуаль
 ности макросистем. Для микрочастиц выполняется принцип тождест
 венности: состояния системы частиц, получающиеся друг из друга пере
 становкой частиц местами, нельзя различить ни в каком эксперименте.
 Такие состояния рассматриваются как одно физическое состояние. Этот
 квантово-механический принцип характеризует одно из основных разли
 чий межДу классической и квантовой механикой. В классической меха
 нике можно проследить за движением отдельных частиц по траекториям
 и таким образом отличить частицы одну от другой. В квантовой механике
 тождественные частицы полностью лишены индивидуальности. Однако
 в природе не существует двух совершенно одинаковых макросис
 тем - все они индивидуальны. Индивидуальность может проявляться и
 на молекулярном уровне. Например, молекулы этилового спирта и диме-
 тилового эфира имеют одинаковые атомный состав и молекулярную мас
 су, но различные химические и физические свойства. Такие вещества на
 зываются химическими изомерами. Изомерия обнаруживается и для
 атомных ядер. Нестабильные ядерные изомеры при одинаковом составе
 ядер имеют различные периоды полураспада.
 8* П5
 
  Фундаментальные физические законы описывают вполне определенные объекты вне зависимости от того, где они находятся. Например, с помощью законов сохранения энергии и импульса можно описать не только движение тел на Земле, но и взаимодействие элементарных частиц, и движение планет, звезд и т.п. Атомы везде одинаковы - на Земле и в космическом пространстве. Все это означает, что фундаментальные законы универсальны - они применимы к объектам всего мира, доступным нашим наблюдениям с помощью самых совершенных и чувствительных приборов. Универсальность фундаментальных законов подтверждается экспериментальными результатами многочисленных исследований различных свойств материальных объектов микро-, макро- и мегамира и свидетельствует о материальном единстве природы и Вселенной в целом.
 3.5. ПРИНЦИП ОТНОСИТЕЛЬНОСТИ
  Важную роль в развитии естествознания сыграл принцип относительности, впервые сформулированный Г. Галилеем для механического движения. Механическое движение относительно, и его характер зависит от системы отсчета. Система, в которой выполняется первый закон Ньютона, называется инерциальной системой отсчета. Такая система либо покоится, либо движется прямолинейно и равномерно относительно какой-то другой системы, неподвижной или движущейся прямолинейно и с постоянной скоростью.
  Опытным путем установлено, что с большой степенью точности инерциальной можно считать гелиоцентрическую (звездную) систему отсчета с началом координат в центре Солнца. Система отсчета, связанная с Землей, строго говоря, неинерциальная, так как Земля вращается вокруг собственной оси и обращается вокруг Солнца. Однако поправки, обусловленные неинерциальностью такой системы, пренебрежимо малы и не учитываются при решении многих задач. Если системы отсчета движутся относительно друг друга равномерно и прямолинейно и в одной из них справедливы законы динамики Ньютона, то такие системы инерци-альные.
  Для инерциальных систем выполняется механический принцип относительности - принцип относительности Галилея:
  во всех инерциальных системах отсчета законы классической динамики имеют одинаковую форму.
  Этот принцип означает, что уравнения динамики при переходе от одной инерциальной системы к другой не изменяются, т. е. инвариантны по отношению к преобразованию координат. Никакими механическими 116
 
 опытами, проведенными в инерциальной системе отсчета, нельзя установить, покоится она или движется равномерно и прямолинейно.
  А. Пуанкаре распространил механический принцип относительности на все электромагнитные процессы, а А. Эйнштейн использовал его для специальной теории относительности, принципы которой он сформулировал в 1905 г. В обобщенном виде принцип относительности формулируется так:
  все инерциальные системы отсчета равноправны между собой (неотличимы друг от друга) в отношении протекания физических процессов или, другими словами, физические процессы не зависят от равномерного и прямолинейного движения системы отсчета.
  Вместе с принципом относительности в физике утвердились понятия инвариантности, инвариантов и симметрии, а также связь их с фундаментальными законами сохранения. Инвариантность означает неизменность физических величин или свойств природных объектов при переходе от одной системы отсчета к другой. В специальной теории относительности постулируется инвариантность законов природы и скорости света в вакууме. Законы природы и скорость света не изменяются в результате преобразований координат и времени, предложенных нидерландским физиком X. Лоренцом (1853-1928) в 1904 г. (еще до появления специальной теории относительности), - преобразований, при которых уравнения Максвелла остаются инвариантными.
 Специальная теория относительности включает два постулата:
  1) принцип относительности: никакие опыты (механические, электриче
 ские, оптические), проведенные в данной инерциальной системе отсчета, не
 дают возможности обнаружить, покоится ли эта система или движется рав
 номерно и прямолинейно; все законы природы инвариантны по отношению
 к переходу от одной инерциальной системы к другой;
  2) принцип инвариантности скорости света: скорость света в вакууме не
 зависит от скорости движения источников света или наблюдателя и одина
 кова во всех инерциальных системах отсчета.
  Специальная теория относительности выходит за рамки привычных классических представлений о пространстве и времени, поскольку они не соответствуют принципу постоянства скорости света. Пространство и время в ней носят не абсолютный, а относительный характер. Из специальной теории относительности следуют необычные пространственно-временные свойства: относительность длин и промежутков времени, относительность одновременности событий.
  Общая теория относительности, называемая иногда теорией тяготения, - результат развития специальной теории относительности. Из нее вытекает, что свойства пространства - времени зависят от поля тяготения. При переходе к космическим масштабам геометрия пространства -
 117
 
 времени может изменяться от одной области к другой в зависимости от концентрации масс материальных объектов и их движения. В поле тяготения пространство - время обладает кривизной. Слабой кривизне соответствует обычная ньютоновская гравитация, которая определяет, например, движение планет Солнечной системы. Однако в сильных гравитационных полях, создаваемых массивными космическими объектами, искривление пространства - времени становится существенным. Если подобного рода объект совершает колебательное или вращательное движение, кривизна периодически изменяется. Распространение таких изменений в пространстве рождает гравитационные волны. Аналогично тому, как электромагнитная волна с квантово-механической точки зрения представляет собой поток фотонов, квантование гравитационной волны соответствует гравитону - частице с нулевой массой покоя. Ни гравитационные волны, ни гравитоны экспериментально не обнаружены. Прием гравитационных волн и обнаружение гравитонов - одно из направлений фундаментальных естественно-научных исследований гравитационно-волновой астрономии.
 3.6. СВОЙСТВА ПРОСТРАНСТВА - ВРЕМЕНИ И ЗАКОНЫ СОХРАНЕНИЯ
  Для понимания законов природных явлений и процессов весьма важен принцип инвариантности относительно сдвигов в пространстве и во времени, т.е. параллельных переносов начал координат и отсчета времени. Он формулируется так: смещение во времени и в пространстве не влияет на протекание физических процессов.
  Инвариантность структуры, свойств, формы материального объекта относительно его преобразований называется симметрией. Наглядный пример пространственной симметрии материальных систем - кристаллическая структура твердых тел. Симметрия кристаллов - закономерность атомного строения, внешней формы и физических свойств кристаллов. Она заключается в том, что кристалл можно совместить с самим собой путем поворотов, отражений, параллельных переносов и других преобразований. Симметрия свойств кристалла обусловлена симметрией его строения. Например, элементы симметрии присущи не только минералам, но и раковинам моллюсков, дикорастущим растениям и т. п. Орнамент, наверное, самое древнее изображение симметрии. С помощью математического моделирования можно продемонстрировать, например, довольно сложный характер взаимодействия электрона с ионами кристаллической решетки, что видно из рис. 3.1, где прослеживается зарождение упорядоченной симметричной структуры из хаотических фрагментов.
 118
 
 
  Из принципа инвариантности относительно сдвигов в пространстве и во времени следует симметрия пространства и времени, называемая однородностью соответственно пространства и времени. Однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.
  Для количественного описания движения тела используется понятие импульса. Импульс определяется произведением массы тела на его скорость. Из свойства однородности пространства следует закон сохранения импульса:
  импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени.
  Этот закон справедлив не только для объектов классической физики (хотя он и получен как следствие законов Ньютона), но и для замкнутых систем микрочастиц, подчиняющихся принципам квантовой механики. Импульс сохраняется и для незамкнутой системы, если геометрическая сумма всех внешних сил равна нулю.
  Закон сохранения импульса носит универсальный характер и является фундаментальным законом природы.
  Однородность времени означает инвариантность физических законов относительно выбора начала отсчета времени. Например, при свободном падении тела в поле силы тяготения его скорость и пройденный путь
 119
 
 зависят лишь от начальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать. Из однородности времени следует закон сохранения механической энергии:
  в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т.е. не изменяется со временем.
  Консервативные силы действуют только в потенциальных полях, характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории оно перемещалось, а определяется его начальным и конечным положением. Если работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной (к ней относится, например, сила трения).
  Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать еще и так:
 в консервативных системах полная механическая энергия сохраняется.
  В диссипативных системах механическая энергия постепенно уменьшается из-за преобразования ее в другие (немеханические) формы энергии. Такой процесс называется диссипацией или рассеянием энергии. Все реальные системы в природе диссипативные.
  В системе, в которой действуют консервативные и диссипативные силы, полная механическая энергия системы не сохраняется. Следовательно, для такой системы закон сохранения механической энергии не выполняется. Однако при убывании механической энергии всегда возникает эквивалентное количество энергии другого вида, например тепловой. Таким образом,
  энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой.
  В этом заключается физическая сущность закона сохранения и превращения энергии - неуничтожимость материи и ее движения, поскольку

<< Пред.           стр. 4 (из 16)           След. >>

Список литературы по разделу