<< Пред.           стр. 6 (из 15)           След. >>

Список литературы по разделу

 
  С детства мы пользуемся понятием "сложность" в самых разнообразных контекстах, хотя, наверное, всегда существует инстинктивное ощущение, что сложность представляет собой нечто, относящееся к разнообразным проявлениям жизни. Таким образом, чаще всего явления типа свободного падения тела под действием силы тяжести или колебания маятника являются для большинства из нас в своей основе "простыми". А такие - как экономическая система, разговорный язык, мозг, или даже простейшая бактерия - сложными.
  Но как быть в этом случае, например, с 1 см3 газа или жидкости, в котором находится невообразимое число хаотически движущихся молекул. Проста эта система или сложна? Скорее всего, мы определим её как "простую". Но поместим эту капельку воды в соответствующие условия и получим великолепную снежинку сложной дендритной формы. Как классифицировать эту систему теперь?
  Отсюда следует, что, по меньшей мере, менее двусмысленно говорить о сложном поведении, чем о сложных системах. Можно надеяться, что изучение такого поведения позволит установить то общее, что имеется между различными классами систем и даст нам лучшее понимание сложного.
  5.4.1. Понимание сложности. Неравновесное
  состояние систем
  С 60-х годов мы были свидетелями революционных достижений, как в математике, так и в физике, что ставит в особое положение работу связанную с описанием природы. Бывшие в течение многих лет параллельными пути развития термодинамической теории необратимых явлений, теории динамических систем и классической механики, в конце концов, сошлись. Это доказывает, что брешь между "простым" и "сложным", между "упорядоченностью" и "разупорядоченностью" гораздо уже, чем думалось раньше.
  Маятник, к которому приложена периодическая возмущающая сила, на границе между вибрацией и вращением приводит к богатому разнообразию типов движения. В таких обычных системах, как слой жидкости или смесь химических продуктов, при определенных условиях могут возникать макроскопические явления самоорганизации в виде ритмически изменяющихся во времени пространственных картин. Короче, ясно, что сложность присуща не только биологии. Она вторгается в физические науки, и, похоже, что ее корни уходят глубоко в законы природы.
  Важнейшие атрибуты Вселенной: сложность, устойчивость, целенаправленность есть следствие очень простых явлений, управляемых набором не очень жёстких правил. Естественнее говорить о сложном поведении, чем о сложных системах, так как не существует абсолютного критерия сложности. Сложность присуща всем явлениям самоорганизации. Способность к возникновению сложного поведения реализуется, когда огромное количество объектов демонстрирует когерентное поведение, несмотря на случайное тепловое движение каждой из них.
  Например, тепловую конвекцию можно рассматривать как прототип явлений физической самоорганизации. В принципе такие масштабные явления как, например, циркуляция атмосферы и океанов, дрейф континентов и т. д. подчиняются тем же правилам, что и поведение жидкости в эксперименте Бенара: нагрев нижней пластины при достижении критической точки приводит к сложному поведению.
  Одно из существенных свойств сложного поведения - это способность осуществлять переходы между различными режимами, или сложные это те системы, в которых наблюдаемое поведение связано с их эволюцией.
  Вдали от равновесия система приспосабливается к окружающему несколькими способами. Связанная с разупорядоченностью неустойчивость движения позволяет системе непрерывно прощупывать собственное пространство состояний, создавая тем самым информацию и сложность. Динамическая система, порождающая хаос, действует как селектор, отбрасывающий огромное большинство случайных последовательностей и сохраняющий последовательности только совместимые с динамическими законами.
  Если физическая система находится в равновесии, знать один этот факт недостаточно, чтобы предсказать ее поведение. Необходимо выяснить устойчиво ли равновесие, то есть, нарушается оно или нет при случайных внешних воздействиях, которых в природе не избежать. В физике сталкиваются с неустойчивостями разного типа и различной природы. Поведение неустойчивых систем интересней и неожиданней поведения устойчивых систем: зачастую неустойчивость приводит не просто к потере равновесия, но к проявлению качественно новых физических эффектов - например, к переходу вещества из одного состояния в другое или к самопроизвольному зарождению порядка в хаотической среде.
  Легко наблюдать развитие неустойчивости при нагревании током тонкой проволоки. Количество тепла, выделяющееся на данном участке проволоки, прямо пропорционально его сопротивлению, а сопротивление металла растет с повышением его температуры, что вызывает еще больший нагрев. Такая положительная обратная связь приводит к неравномерности накала: если в какой-то точке проволока случайно нагреется сильнее, то сопротивление там возрастет и тепла выделится больше, чем в соседних местах (общее сопротивление проволоки изменится слабо, ток через нее можно считать прежним). Дополнительное тепло еще сильней нагреет горячий участок проволоки, так что разница температур будет нарастать и нарастать.
  Для того, чтобы флуктуация могла сыграть свою роль конструктора новой макросистемы, необходимо неустойчивое состояние системы. Состояние неустойчивости системы означает её чувствительность к малым возмущениям. Неустойчивость приводит к коренным перестройкам нелинейной открытой среды. Наличие неустойчивости вдали от точки равновесия гарантирует развитие.
  5.4.2. Сложное поведение и фазовое пространство45
  Так называемое "фазовое пространство" есть абстрактное математическое многомерное пространство, на осях координат которого откладываются независимые переменные движения системы. Последовательность мгновенных состояний системы образует кривую в фазовом пространстве траекторий. Фазовая траектория показывает как бы пространственную развёртку временной эволюции системы. Эти траектории называются фазовыми портретами эволюции системы. Точка соответствует достижению системой состояния равновесия, окружность или симметричный предельный цикл - выходу на незатухающий периодический режим типа колебаний математического маятника.
  Поведение систем в фазовом пространстве характеризуется таким специальным понятием синергетики, как "аттрактор". Аттракторы - это геометрические структуры, характеризующие поведение в фазовом пространстве по прошествии длительного времени. Геометрически это множество точек, к которым приближается траектория после затухания переходных процессов, то есть область притяжения соседних точек (to attract англ. - притягивать). Аттрактор - близко понятию "цель". Это относительно устойчивое состояние системы, которое как бы притягивает к себе всё множество траекторий собственного движения, определяемых разными начальными условиями. Если система попадает в конус аттрактора, то она эволюционирует к этому состоянию.
  Грубо говоря, аттрактор - это то, к чему система стремится прийти, к чему она притягивается. Это явление имеет общий характер: потери энергии из-за трения или, например, вязкости приводят к тому, что орбиты притягиваются к небольшому множеству фазового пространства, имеющему меньшую размерность. Всякое такое множество называется аттрактором. Грубо говоря, аттрактор отвечает установившемуся поведению системы - тому, к которому она стремится.
  Самый простой тип аттрактора - неподвижная точка. Такой аттрактор соответствует поведению маятника при наличии трения; маятник всегда приходит в одно и то же положение покоя независимо от того, как он начал колебаться. Следующий, более сложный аттрактор - предельный цикл, который имеет форму замкнутой петли в фазовом пространстве. Предельный цикл описывает устойчивые колебания, такие, как движение маятника в часах или биение сердца.
  Одна и та же система может иметь несколько аттракторов. Это означает, что разные начальные условия могут привести её к разным аттракторам. Множество точек, приводящих к некоторому аттрактору, называется его областью притяжения. Система с маятником имеет две такие области: при небольшом смешении маятника от точки покоя он возвращается в эту точку, однако при большом отклонении часы начинают тикать, и маятник совершает стабильные колебания.
  Сложному колебанию, или квазипериодическому движению, соответствует аттрактор в форме тора. Такая форма отвечает движению, составленному из двух независимых колебаний, - так называемому квазипериодическому движению. Траектория навивается на тор в фазовом пространстве, одна частота определяется временем оборота по малому кругу тора, другая - по большому кругу. Для комбинации более чем двух вращений аттракторами могут быть многомерные торы.
  Важное отличительное свойство квазипериодического движения состоит в том, что, несмотря на сложный характер, оно предсказуемо. Хотя траектория может никогда не повторяться точно (если частоты несоизмеримы), движение остается регулярным. Траектории, начинающиеся поблизости одна от другой на торе, так и остаются поблизости одна от другой, и долгосрочный прогноз гарантирован.
  В теории диссипативных систем аттракторам и странным аттракторам, являющимся базисными фактами теории самоорганизации, уделяется особое внимание. Наличие странных аттракторов, приводящих к динамическому хаосу, становится причиной катастроф, где возможна внезапная смена движений, переход из хаотического состояния в упорядоченное и обратно.
  До недавнего времени были известны лишь перечисленные виды аттракторов: неподвижные точки, предельные точки, предельные циклы и торы. В 1963 году Э. Лоренц из Массачусетского технологического института открыл конкретную систему со сложным поведением. Движимый желанием понять, в чем трудность с прогнозами погоды, он рассмотрел уравнения движения жидкости, (они одновременно описывают и атмосферные течения) и путем упрощений получил систему ровно с тремя степенями свободы.
  Эта система вела себя случайным образом и не поддавалась адекватному описанию с помощью какого-нибудь из известных аттракторов. Обнаруженный Лоренцем аттрактор, называемый теперь его именем, стал первым примером хаотического, или странного, аттрактора.
  Промоделировав свою простую систему на компьютере, Лоренц выявил основной механизм, который вызывал случайное поведение: микроскопические возмущения накапливаются и влияют на макроскопическое поведение. Две траектории с близкими начальными условиями экспоненциально расходятся в процессе эволюции, так что они проходят рядом лишь совсем недолго. В случае нехаотических аттракторов качественная картина совершенно другая. Для них близкие траектории так и остаются близкими, небольшие ошибки остаются ограниченными, а поведение предсказуемым.
  С другой стороны, некоторые особенности поведения хаотических систем удается предсказать (с конечной точностью и в ограниченных по времени пределах). Язык аттракторов позволяет осмыслить явления предсказуемости и принципиальной непредсказуемости, дает понимание вероятностного, хаотического поведения систем, обусловленного не ограниченностью наших исследовательских возможностей, а самой природой нелинейных систем.
  Хаотический аттрактор имеет гораздо более сложное строение, чем предсказуемые аттракторы - точка, предельный цикл или тор. В крупном масштабе хаотический аттрактор есть неровная поверхность со складками. Это видно на примере этапов образования так называемого хаотического аттрактора Рёсслера. Сначала близкие траектории на объекте расходятся экспоненциально; расстояние между соседними траекториями увеличивается примерно вдвое. Чтобы остаться в конечной области, объект складывается поверхность сгибается и её края соединяются. Аттрактор Рёсслера наблюдался во многих системах, от потоков жидкости до химических реакций; этот факт иллюстрирует максиму Эйнштейна о том, что природа предпочитает простые структуры.
  Ключ к пониманию хаотического поведения дает простая процедура растягивания и образования складок в фазовом пространстве. Экспоненциальная расходимость - локальное явление: поскольку аттрактор имеет конечные размеры, две орбиты на хаотическом аттракторе не могут экспоненциально расходиться навсегда. Это означает, что такой аттрактор должен образовывать складки внутри самого себя. И хотя орбиты расходятся и следуют совершенно разными путями, в конце концов, они должны пройти снова вблизи друг от друга. В результате орбиты на хаотическом аттракторе перемешиваются подобно тому, как, например, перетасовываются карты в колоде.
  Случайность хаотических орбит есть результат этого процесса перемешивания. Вытягивание и образование складок происходит снова и снова, создавая складки внутри складок, и так до бесконечности. Иначе говоря, хаотический аттрактор является фракталом - объектом, в котором по мере увеличения выявляется все больше деталей. Фракталы, фрактальные множества - это такие объекты, которые обладают свойством самоподобия или масштабной инвариантности. То есть малый фрагмент структуры такого объекта подобен другому более крупному фрагменту или структуре в целом. Типичные фрактальные объекты - это морские волны, облака, барханы в пустыне.
  Хаос перемешивает орбиты в фазовом пространстве точно так же, как пекарь месит тесто для выпечки хлеба. Представить себе, что происходит с близлежащими траекториями на хаотическом аттракторе, поможет такой эксперимент.
  Добавим в тесто каплю синей пищевой краски. Вымешивание теста - это комбинация двух действий: его то раскатывают (при этом цветное пятно расширяется), то складывают. Поначалу пятно просто становится длиннее, затем образуются складки, и все это повторяется снова и снова. При ближайшем рассмотрении оказывается, что тесто состоит из многих слоев попеременно белого и голубого цвета. Уже через 20 шагов исходное пятно вытягивается более чем в 20 млн. раз по сравнению с начальной длиной, а его толщина сокращается до молекулярных размеров. Синяя краска полностью перемешалась с тестом. Хаос действует точно так же, только вместо теста он перемешивает фазовое пространство.
  Вытягивание и складывание хаотического аттрактора систематически устраняет начальную информацию и заменяет ее новой: при растяжении увеличиваются мелкомасштабные неопределенности, при складывании сближаются далеко отстоящие траектории и стирается крупномасштабная информация. Таким образом, хаотические аттракторы действуют как своего рода помпа, "подкачивающая" микроскопические флуктуации в макроскопическое проявление. Отсюда ясно, что никакого точного решения, никакого кратчайшего пути для прогноза будущего быть не может. Проходит совсем немного времени, и неопределенность, возникшая при начальном измерении, покрывает весь аттрактор, лишая нас возможности делать какие бы то ни было предсказания: между прошлым и будущим уже нет никакой причинной связи.
  5.4.3. Сложность поведения живых и социальных
  систем
  Удаленность от равновесия, нелинейность может служить причиной возникновение упорядоченности в системе. Биологическая упорядоченность, генерация когерентного света лазером, возникновения пространственной и временной упорядоченности в химических реакциях и гидродинамике, автоволны в различных средах, наконец, функционирование экосистем в животном мире или жизнь человеческого общества - все эти примеры являются поразительной иллюстрацией явлений самоорганизации, образования диссипативных структур. Эти структуры наряду с замечательными регуляторными свойствами проявляют необычайную гибкость и разнообразие.
  Приспособляемость и пластичность поведения - два основных свойства нелинейных динамических систем, способных на переходы вдали от равновесия - являются наиболее характерным свойством человеческих сообществ. Наиболее адекватными для социальных систем являются динамические модели, учитывающие эволюцию и изменчивость. При построении динамической модели социальной системы внутренняя структура должна учитывать жёстко заданное внешнее окружение. Уникальной спецификой социальных систем является то, что различие между желательным и действительным поведением выступает как внешнее условие нового типа, определяющее контуры динамики наряду с внешней средой. Если в систему вводится новый вид деятельности, то в дальнейшем он будет расширяться и стабилизироваться. Инновация может быть удачной или нет. Основным источником существования и обновления общества являются его адаптационные возможности.
  Социальная система является нелинейной, так как взаимодействия между членами общества могут производить каталитический эффект. В каждый момент времени возникают флуктуации, которые могут подавляться или усиливаться обществом. Особенно хороший пример мощного усиления - это прирост знания. Сложная система развивается в эволюционном процессе творческих открытий, в котором играют роль как стохастические, так и детерминистические процессы. Социальные системы следует рассматривать как креативный мир с неполной информацией и изменяющимися ценностями, мир, в котором будущее может быть представлено во многих вариантах.
  Социальная проблема ценностей в широких пределах может связываться с нелинейностью. Ценности - это коды, которые мы используем, чтобы удержать социальную систему на некоторой линии развития, которая выбрана историей. Системы ценностей всегда противостоят дестабилизирующим эффектам флуктуации, которые порождаются самой системой. Это и придаёт процессу черты необратимости и непредсказуемости.
  5.4.4. Сложность адаптивных стратегий в живом мире
  При неизменной предсказуемой среде поведение представляет собой постоянную структуру. Если же в среде происходят изменения, и она становится непредсказуемой, то поведение начинает характеризоваться интенсивностью исследований и быстрым созданием временных поведенческих структур. Любое сообщество насекомых проявляет замечательную пластичность. И первичным механизмом, лежащим в основе столь высокой эффективности поведения, является переход между различными типами поведения, вызываемый внешними условиями
  Детерминистические представления о насекомых уходят в прошлое по мере изучения их поведения. Возникают представления о пластичности индивидуального поведения. В сообществе насекомых реализуются две поведенческие стратегии:
  1. Случайность поведения особи.
  2. Согласованность поведения в масштабе колонии.
  Единый процесс развития охватывает явления живой и неживой природы и общества, поэтому естественно описывать весь процесс развития на одном языке, в рамках единой схемы, с использованием общей терминологии. В эволюционной теории для описания процессов развития используют триаду: изменчивость, наследственность, отбор. Задача состоит в том, чтобы выявить то общее содержание, которое присуще любым процессам развития.
  Определяющую роль эволюционного периода развития систем играют такие понятия, как адаптация, устойчивость, стабилизирующий отбор. Необходимым условием существования живых организмов является постоянство внутренней среды. Гомеостазис (от греческого "гомео" - тот же, "стазис" - состояние) рассматривается биологами как способность биологических систем противостоять изменениям внешней среды и сохранять состояние равновесия. Например, только благодаря механизмам поддержания гомеостазиса некоторые растения могут жить на ядовитых отвалах рудников. Есть растения - концентраторы металлов - алюминия, молибдена, никеля, свинца, стронция. При этом для предотвращения отравления тканей в растениях синтезируются специфические белки (определяющие устойчивость к высоким концентрациям металлов), изменяются количество и качество корневых выделений, тяжелые металлы связываются в клетках дубильными веществами и органическими кислотами. Механизмы поддержания гомеостазиса исторически закреплены и направлены на повышение устойчивости организма в онтогенезе, что обеспечивает успех в воспроизведении потомства.
  Развитие - это борьба двух противоположных тенденций - сохранение гомеостазиса и поиск новых организационных форм, уменьшающих локальную энтропию.
  Согласно концепции прерывистого равновесия, разработанной американскими исследователями С. Гоулдом, Н. Элдриджем и С. Стэнли, эволюция, во всяком случае, на видовом уровне, по крайней мере, в 95% случаев идет не непрерывно, а своего рода скачками. Предполагается, что виды остаются практически неизменными на протяжении буквально миллионов лет, а затем в течение нескольких десятков или сотен лет происходит формирование новых видов. Переход от вида к виду совершается в ее свете не посредством скачка в одном поколении, а путем накопления мутации и отбора.
  Всякое значительное изменение экологических условий влечет за собой перестройку всей организации сообщества животных. Например, у животных, ведущих одинокий образ жизни, в случае необходимости возникает строгая иерархическая структура. В период нехватки корма такая организация сообщества определяет очередность доступа к пище. Доминирование может не только разделять, но и объединять животных, оно способствует процессу локализации, образованию структуры в сообществе взамен агрессивных взаимодействий особей.
  Биологические системы обладают способностью сохранять и передавать информацию в виде структур и функций, возникших в прошлом в результате длительной эволюции. Открыты подвижные генетические элементы, которые оказались замешаны в таких общебиологических явлениях, как азотфиксация, злокачественный рост клеток, работа иммунной системы и приспособление бактерий к антибиотикам, нестабильные мутации, материнская наследственность.
  Нестойкое, нестабильное состояние гена, когда он начинает мутировать в десятки, сотни раз чаще обычного, связано не с изменениями внутри самого гена, а с введением в район его расположения определенного "контролирующего" элемента, способного блуждать по хромосомам. Эти элементы влияют на "включение" и "выключение" генов, то есть на темп наследственной изменчивости. В классической генетике мутации возникают случайно; им подвержены единичные особи; их частота очень мала. В "подвижной генетике" изменения не случайны, зависят от типа подвижного элемента; им подвержены много особей; их частота велика, может достигать десятка процентов.
  Темп мутационного процесса непостоянный, так, время от времени популяции или виды вступают в "мутационный" период. Самое поразительное открытие в генетике за последнее время - это возможность с помощью мобильных элементов переносить гены или группы генов от одних видов к другим, то есть благодаря перемещающимся элементам генофонды всех организмов объединены в общий генофонд всего живого мира. Это особенно ярко продемонстрировали плазмиды с детерминантами устойчивости к антибиотикам в колоссальном эксперименте, невольно поставленном человеком на бактериях.
  С помощью генсектицидов человек расширяет эксперимент на насекомых, и в ответ их популяции, вероятно, охватываются определенными, быстро распространяющимися генетическими элементами, повышающими устойчивость организма ("генетическая экспансия"). Предполагается, что когда-то в клетках насекомых поселились бактерии - симбионты, которые постепенно передали большинство своих генов в ядро и превратились в митохондрии и пластиды. Это замечательный пример переноса генов от прокариот к эукариотам. Способность клеток одного вида воспринимать ДНК от других, иногда эволюционно далеких видов, возможность горизонтального переноса генов считается "одним из главных чудес XX века".
  Классическая генетика гласит: каждый ген располагается на своей хромосоме и занимает на ней строго фиксированное положение. Сейчас известно много вариантов перемещающихся элементов, которые могут менять свое место на хромосоме и даже перемещаться с хромосомы на хромосому. Таким образом, могут рождаться новые признаки организма.
  Сегодня появилась принципиально новая программа изучения неравновесных сообществ, чьи принципы организации коренным образом отличаются от тех, к которым привыкли экологи, рассматривающие сообщество как жестко организованную совокупность видов.
  В этом подходе представление о прямой конкуренции за пищу подменяется сложными и динамичными информационными связями. В зависимости от условий метаболиты (продукты жизнедеятельности) данного вида либо угнетают, либо, наоборот, стимулируют размножение других видов. При этом возможны как негативные, так и позитивные межвидовые отношения. Разные виды не только не стремятся окончательно вытеснить друг друга, но как бы "удерживают" в сообществе те виды, численность которых падает ниже определенного уровня.
  В прежней теории конкуренции выражена концепция детерминизма: конкуренция определяет численность, облик и эволюцию существующих видов, потребляющих одну и ту же пищу.
  Новый подход гласит: близкие виды, расположенные в экосистеме на одном трофическом уровне, всегда живут среди избытка пищи, поскольку их численность эффективно ограничивается сложным комплексом причин, в том числе и конкуренцией. Согласно этой парадигме биологическое сообщество можно рассматривать как диссипативную структуру, которая, находясь в неравновесном состоянии, постоянно ведет обмен с внешней средой. В исходной неупорядоченной системе за счет последовательно реализующихся неравновесных неустойчивостей, за счет когерентного поведения элементов может возникнуть функциональная организованность.
  Адаптация человека и животных представляет собой процесс, в течение которого организм приобретает отсутствовавшую ранее устойчивость к определенным факторам среды и в результате решает задачи, ранее несовместимые с жизнью. При всем разнообразии приспособительных процессов в них есть сходство. На первом этапе адаптации к любому новому фактору организм подходит к максимуму своих возможностей, к критической (бифуркационной) точке. Если человек или животное не погибает, а фактор по-прежнему действует, то возможности живой системы возрастают, и на смену аварийной стадии в большинстве случаев приходит стадия эффективной и устойчивой привычки (возникает диссипативная структура).
  5.5. Управление
  Кибернетика и теория управления. Кибернетика и синергетика. ( Управление и информация. Классический и неклассический подход к управлению. Структура целей управления. ( Эффект обратной связи. Эвристический характер основ управления социальными системами. Специфика биологического и социального управления процессами. Естественные и искусственные регуляторы управления.
 
  Современное понимание управления существенно отличается от первоначальных представлений о нём. Теперь оно, прежде всего, подразумевает универсальный характер управленческих процедур. Очень просто можно сказать так, что управление - это комплекс мер, которые осуществляет любая система в целях поддержания собственного существования, которое выражено в линейной или чаще в нелинейной форме равновесия. То есть управление не является прерогативой только социальной сферы, оно, в конечном счёте, есть функция существования биосферы. Разумеется, в зависимости от характера существующих систем (неживых, живых, социальных) различается и структура их управления: она может быть внешней (иерархический контроль), внутренней (гомеостаз), статичной или динамичной и т. д. В то же время управление во всех своих разновидностях всегда будет иметь некие общие черты, выраженные, например, принципами синергетики.
  5.5.1. Кибернетика и теория управления
  Задачу выяснить с общих позиций закономерности процессов самоорганизации и образования структур ставит перед собой не только синергетика. Важную роль в понимании многих существенных особенностей этих процессов сыграл, например, кибернетический подход, противопоставляемый иногда как абстрагирующийся "от конкретных материальных форм" и поэтому противопоставляемый синергетическому подходу, учитывающего физические основы спонтанного формирования структур.
  В этой связи небезынтересно отметить, что создатели кибернетики и современной теории автоматов могут по праву считаться творцами или предтечами синергетики. Так, Винер и Розенблют рассмотрели задачу о радиально-несимметричном распределении концентрации в сфере. А. Тьюринг в известной работе предложил одну из основных базовых моделей структурообразования и морфогенеза.
  В изучении реакционно-диффузионных систем - мыслил найти решение проблемы самоорганизации и Дж. фон Нейман. По свидетельству А. Беркса, восстановившего по сохранившимся в архиве фон Неймана отрывочным записям структуру самовоспроизводящегося автомата, фон Нейман "предполагал построить непрерывную модель самовоспроизведения, основанную на нелинейных дифференциальных уравнениях в частных производных, описывающих диффузионные процессы в жидкости".
  Термином "кибернетика" 2500 лет назад древнегреческий философ Платон называл "искусство управления кораблём". В начале XIX века французский физик и математик А. - М. Ампер, создавая классификацию наук, называл кибернетику наукой об управлении государством. После смерти Ампера слово это было забыто. В 1948 году американский математик Норберт Винер издал книгу "Кибернетика ...", в которой определил это понятие как "науку об управлении и связи в животном и машине". До этого Н. Винер три года проработал в институте кардиологии города Мехико. Именно тогда он пришёл к мысли создать единую науку, изучающую процессы хранения информации и её переработки, управления и контроля46. Одна из важнейших задач кибернетики - исследование управляющих систем живой природы. Ключевым вопросом в её решении стало понятие обратной связи, влияния следствий на причины, их вызывающие и определяющие ход процесса.
  Кибернетика возникла на стыке многих областей знания: математики, логики, семиотики, биологии и социологии. Обобщающий характер кибернетических идей и методов сближает науку об управлении, каковой является кибернетика, с философией. Задача обоснования исходных понятий кибернетики, особенно таких, как информация, управление, обратная связь и др. требуют выхода в более широкую, философскую область знаний, где рассматриваются атрибуты материи - общие свойства движения, закономерности познания.
  Явления, которые отображаются в таких фундаментальных понятиях кибернетики, как информация и управление, имеют место в органической природе и общественной жизни. Таким образом, кибернетику можно определить как науку об управлении и связи с живой природой в обществе и технике. Информация в живой природе в отличие от природы неживой играет активную роль, так как участвует в управлении всеми жизненными процессами.
  5.5.2. Информационная структура управления
  Управление представляет процесс взаимодействия компонентов системы, который осуществляется избирательно и направлен на получение фокусированного результата.
  Результат в силу его физического несуществования до момента достижения, задаётся функционально, а процесс его достижения обеспечивается получением переработкой и использованием информации. Предполагается, что результат задан действием какой-либо закономерности, относящейся к соответствующей предметной области. Если результат не изменяется во времени, имеет место частный случай управления - регулирование, а система управления называется гомеостатической.
  Схема управления в классическом подходе проста - каналы управления не имеют кооперативных связей друг с другом - любое появление рассогласования в канале слежения вызывает адекватную ему "сильную" реакцию системы управления именно в этом канале, а эффективность управления оценивается характером устранения "главного" нарушения. При этом не важно, как в процессе ликвидации возмущения будет меняться состояние объекта и управляющей системы.
  Накопленные представления о гомеостазе показали наличие более сложных отношений между комплексом целей управления (в частности наличия целей управления, обусловленных стремлением системы к сохранению себя как целостной структуры) и организованном взаимодействии каналов управления. Эти представления все более отдалялись от классического подхода теории управления и стали ему чужды в принципе.
  Шагом на пути к введению в процесс управления более сложных отношений между целями управления явился подход, получивший название "координирующего управления". Понятие цели управления теперь изменено - вместо слежения (один "главный" выход за одним входом) теперь ставится следующая задача: при наличии внешних возмущений от системы требуется сохранение заданного соотношения между некоторым числом выходных переменных. Это требование, с одной стороны, порождает взаимозависимость целей управления, но, с другой стороны, предоставляет дополнительные степени свободы у управляющей системы, которые можно использовать и для сохранения постоянства внутренней среды.
  В результате появилась очевидная аналогия с гомеостазом, так как возможна ликвидация отклонений, вызываемых в функционировании системы внешними возмущениями при ненарушенном внутреннем состоянии объекта (в некоторой "существенной" его части). В отличие от классического подхода, эффективность управления теперь оценивается способностью системы сохранять функционирование при относительном постоянстве состояния. Кардинально отличается и схема управления - при возмущении в любом из каналов системы включается весь резерв механизмов управления с тем, чтобы "нагрузка" на каждый из них была минимальна, а "сильных реакций" среди "главных" переменных состояния не возникало.
  Для гомеостатической формы организации систем необходимо соблюдения комплекса целей, характеризующих компромиссный характер управления. Очевидно, что отсутствие какой-либо объективно необходимой цели приводит к отсутствию целостности. Появление излишних, объективно ненужных целей управления приводит к выполнению ненужных действий - дисфункций, способных нарушить целостность. Придание какой-либо цели управления несоответствующего статуса в общей структуре также способно нарушить целостность разрабатываемой системы либо из-за недоучета каких-либо функций, либо из-за их излишнего проявления.
  Структура целей управления, характерная для гомеостаза как формы структурной организации, включает в себя системную, стадийные и инфраструктурные цели.
  Системная цель является интегрирующим понятием, обуславливающим общую целенаправленность функционирования систем. Системная цель в общем случае достигается в результате последовательного выполнения стадийных целей и может рассматриваться как их суперпозиция.
  Общий состав стадийных целей можно описать следующими формулировками:
  1. непосредственно реализующие системную цель;
  2. формирующие предпосылки для выполнения действий реализующих системную цель;
  3. поддержание готовности к выполнению этих действий;
  4. ожидания при невозможности в ближайшее время выполнить остальные группы действий;
  5. восстановление состава ресурсов управления.
  Каждая стадийная цель выполняется на фоне комплекса инфраструктурных целей, обеспечивающих самосохранительные свойства. Инфраструктурные цели определяются следующим образом: "Наиболее важной и достигаемой в первую очередь целью является поддержание стационарного неравновесного состояния. Эта цель может быть сформулирована как поддержание равенства темпов потоков вещества и энергии, поступающих в систему и покидающих ее. После этого возникает возможность поддержания постоянства внутренней среды - гомеостаза, что является целью второго порядка. Наконец, если обе эти цели достигнуты, возможно прогрессирующее улучшение качества процессов в системе. В этой ситуации можно говорить об энергетической эффективности, оптимальной конструкции, получении максимальной надежности функционирования и т.д. Однако достижение максимально высоких показателей в биосистемах является уже целью третьего порядка по сравнению с поддержанием стационарного неравновесия и гомеостаза".
  Зависимость инфраструктурных целей от стадийной цели имеет как идентификационный, так и функциональный характер. Первое означает, что для конкретной стадии конкретная инфраструктурная цель может быть актуальна или неактуальна. Второе означает наличие правила конкретного выбора значений параметра, характеризующего конкретную инфраструктурную цель в зависимости от значений параметра, характеризующего стадийную цель.
  5.5.3. Эффект обратной связи
  Означает цикличность, замкнутость несущего информацию сигнала с выхода на вход системы управления. Посредством обратной связи осуществляется приведение объекта управления в соответствие с функционально-заданным результатом управления. Отрицательная обратная связь уменьшает действие возмущающих воздействий, положительная - усиливает, что может привести к разрушению системы управления.
  В традиционной кибернетике гомеостаз рассматривается как некоторое устойчивое с точки зрения цели управления состояние объекта. Гомеостаз здесь обеспечивается тем, что всякие отклонения состояний объекта управления от цели управления компенсируются за счет отрицательной обратной связи. То есть, в этом представлении гомеостаз прочно связан с целью управления.
  Если бросить взгляд на историю постановок задач в теории автоматического регулирования и затем в теории управления, то можно представить ее как постепенное их усложнение, идущее параллельно по двум направлениям.
  1. Первое - использование все более сложных описаний объекта управления (в простейшем понимании это, например, поочередное описание объекта сначала линейными уравнениями "вход-выход" с одномерным управляемым сигналом, затем переход к описанию "вход-выход-состояние", использование многосвязных линейных описаний и, наконец, сложные нелинейные системы).
  2. Второе - все более усложняющийся набор требований к системе управления: сначала простое обеспечение устойчивости системы, затем повышение ее качества (в том числе оптимальность), далее поддержание этого качества во все более широком диапазоне неопределенности (адаптация).
  Однако при всем стремлении теории управления к строгим постановкам задач, формализации используемых методов и подходов, разработка реальных систем управления в огромной степени базировалась на эвристической основе. По сути эвристическим оставался главный выбор разработчика системы управления - между содержательной точностью постановки задачи (сложность описания объекта) и возможностями ее формализации и строгого решения. Дилемма "простое описание - точное решение" или "сложное описание - неформализуемая постановка задачи и приближенное решение" в теории управления всегда была принципиальной, хотя часто и оставалась за рамками дискуссий.
  На одном полюсе - линейный n-мерный объект, описываемый обыкновенными дифференциальными уравнениями с постоянными коэффициентами. Строгое решение задачи управления таким объектом в любой постановке (например, оптимальное управление по заданному критерию) в практике управления оказывается эвристическим из-за несоответствия простоты использованного описания сложностям реальных условий функционирования системы.
  На другом полюсе - "ручное" управление сложными социальными процессами, предприятиями и т.п. Эвристическая основа современного менеджмента и практическая невозможность использовать методы управления динамическими системами, оправданы тем, что управляемый объект (предприятие) при решении текущих управленческих задач берется во всей полноте живых связей, без каких-либо упрощений.
  Однако сам эвристический путь совершенствования систем управления постепенно формализуется в рамках теории систем (и теории управления), в основном путем выработки синтетических обобщающих концепций методологического плана. Среди них - общая теория систем Л. фон Берталанфи, кибернетика Н. Винера, функциональная теория систем М. И. Сетрова, многочисленные ветви системного анализа, системотехнические и системологические работы, наконец - "глобальные идеи" теории управления, такие как обратная связь, адаптация. Среди этих работ важное место занимает и идея формализации гомеостаза на стыке биологии и теории управления.
 
 ГЛАВА 6. ЖИЗНЬ
  6.1. Проблема возникновения жизни
  Специфика жизни как особого уровня организации материи и как объекта биологического познания. ( Креационизм. ( Гипотеза спонтанного зарождения жизни. ( Гипотеза стационарного состояния. ( Гипотеза панспермии. ( Теория биохимической эволюции (А. И. Опарин, Д. Холдейн).
 
  В развитии учений о происхождении жизни существенное место занимает теория, утверждающая, что все живое происходит только от живого - теория биогенеза. Эту теорию в середине XIX века противопоставляли ненаучным представлениям о самозарождении организмов (червей, мух и др.). Однако как теория происхождения жизни биогенез несостоятелен, поскольку принципиально противопоставляет живое неживому, утверждает отвергнутую наукой идею вечности жизни.
  Абиогенез - идея о происхождении живого из неживого - исходная гипотеза современной теории происхождения жизни. В 1924 г. известный биохимик А. И. Опарин высказал предположение, что при мощных электрических разрядах в земной атмосфере, которая 4-4,5 млрд. лет назад состояла из аммиака, метана, углекислого газа и паров воды, могли возникнуть простейшие органические соединения, необходимые для возникновения жизни.
  Предсказание академика Опарина оправдалось. В 1955 г. американский исследователь С. Миллер, пропуская электрические заряды через смесь газов и паров, получил простейшие жирные кислоты, мочевину, уксусную и муравьиную кислоты и несколько аминокислот. Таким образом, в середине XX века был экспериментально осуществлен абиогенный синтез белковоподобных и других органических веществ в условиях, воспроизводящих условия первобытной Земли.
  6.1.1. Специфика жизни как особого уровня
  организации материи
  По данным геохимических исследований древнейших горных пород можно сделать вывод о том, что эволюционный уровень фотоавтотрофной* жизни был достигнут 4.5 - 4 млрд. лет назад. То есть фотоавтотрофная биосфера существовала не менее 4 млрд. лет назад. Однако, по данным цитологии* и молекулярной биологии* фотоавтотрофные организмы были вторичными в процессе эволюции живого вещества. Автотрофному* способу питания должен был предшествовать гетеротрофный* как более простой. Древнейшая жизнь, вероятно, существовала в качестве гетеротрофных бактерий, получавших пищу и энергию из органического материала абиогенного происхождения, образовавшегося ещё раньше. Видимо, жизнь на Земле существует столько же времени, сколько существует и сама планета.
  Возможно, что химическая эволюция как существенная предпосылка биологической эволюции началась ещё в космических условиях до образования Земли. Вероятно, химическая эволюция, начавшаяся в космических условиях, продолжалась в условиях Земли и привела к возникновению примитивных живых организмов, или образование первых молекул ДНК произошло в космических условиях, а полная реализация возможностей ДНК наступила в первых водоёмах заполненных растворённым органическим веществом47.
  Несомненно, что возникновение живого вещества планеты связано со свойствами слагающих его атомов и, прежде всего, углерода. Первопричиной зарождения жизни, очевидно, стали некоторые процессы в космической эволюции вещества Солнечной системы. Главные элементы живого вещества - это широко распространённые элементы космоса. При этом Н, С, N, О - типичные "биофильные" элементы - наиболее широко распространены в природе. Живые организмы в первую очередь используют наиболее доступные атомы, которые способны образовывать устойчивые и кратные химические связи. При охлаждении первичной газовой туманности, генетически связанной с ранним Солнцем, возникли органические соединения48.
  Жизнь возникла на Земле абиогенным путем. В настоящее время живое происходит только от живого (биогенное происхождение). Возможность повторного возникновения жизни на Земле исключена.
  6.1.2. Гипотеза творения (креационизм)
  Наряду с гипотезами абиогенного происхождения жизни существуют и другие гипотезы. Гипотеза творения утверждает, что жизнь была создана сверхъестественным существом в определённое время. Креационная модель, в отличие от эволюционной, предполагает, что все основные системы природы были созданы одновременно и в совершенном виде. Всё существующее, включая частицы атомов, вещества планеты, организмы людей и животных, изначально создано таким, каким мы его сейчас наблюдаем. Креационизм утверждает, что в природе действует правило, согласно которому совершенный порядок ухудшается, приходит в упадок по мере выполнения своего предназначения.
  Так как среди ископаемых отсутствуют различные промежуточные формы, то делается вывод, что основные виды животных и растений не развились из предшествующих видов. Если бы было иначе, то не могло быть классификации флоры и фауны, поскольку между постоянно изменяющимися промежуточными формами нельзя провести границы. Сам Ч. Дарвин считал, что количество промежуточных разновидностей живых организмов, населявших Землю на протяжении её биологической истории, должно быть большим. К настоящему времени не удалось проследить ни одной непрерывной цепочки. Даже для объяснения эволюционного происхождения человека продолжаются поиски "недостающего звена". Само творение, поскольку оно в данный момент не происходит, не может стать объектом научных наблюдений. Эволюция, если она есть, происходит так медленно, что её нельзя подвергнуть научным исследованиям. Поскольку возможность повторить ход естественной истории отсутствует, научно доказать, какое учение истинно, также невозможно49.
  6.1.3. Гипотеза спонтанного зарождения жизни
  Жизнь возникала неоднократно из неживого вещества. Представления о спонтанном зарождении жизни возникли как альтернатива креационизму ещё в древности в Китае, Вавилоне, Египте. Еще Аристотель, развивая своё учение о "лестнице природы", полагал, что определённые частицы любого вещества содержат активное начало, из которого может развиться живой организм. "Ибо природа совершает переход от безжизненных объектов к животным с такой плавной последовательностью, поместив между ними существа, которые живут, не будучи при этом животными, что между соседними группами, благодаря их тесной близости, едва ли можно заметить различия".
  Лишь в 1688 году Фр. Реди из Флоренции, пожалуй, впервые сформулировал принцип биогенеза - жизнь может происходить только из предсуществовавшей жизни. В 1860 г. Луи Пастер доказал верность этого принципа. Однако подтверждение теории биогенеза породило другую проблему, коль скоро для возникновения живого организма необходим другой живой организм, то откуда же взялся самый первый живой организм?
  В отношении самозарождения организмов необходимо отметить, что Французская Академия наук еще в 1859 г. назначила специальную премию за попытку осветить по-новому вопрос о самопроизвольном зарождении жизни. Эту премию в 1862 г. получил знаменитый французский ученый, основоположник современной микробиологии Луи Пастер. Своими опытами он доказал невозможность самозарождения микроорганизмов.
  Важно подчеркнуть, что в настоящее время жизнь на Земле не может возникнуть абиогенным путем. Еще Дарвин в 1871 г. писал: "Но если бы сейчас ... в каком-либо теплом водоеме, содержащем все необходимые соли аммония и фосфора и доступном воздействию света, тепла, электричества и т. п., химически образовался белок, способный к дальнейшим все более сложным превращениям, то это вещество немедленно было бы разрушено и поглощено, что было невозможно в период возникновения живых существ".
  6.1.4. Гипотеза стационарного состояния
  Жизнь существовала всегда. Согласно этой теории, Земля никогда не возникала, а существовала вечно. Она всегда способна поддерживать жизнь, а если и изменялась, то очень мало. Виды тоже существовали всегда. Постоянно совершенствующиеся методы датирования возраста Земли дают всё более высокие оценки, и это позволяет сторонникам этой гипотезы полагать, что Земля существовала всегда. Виды не изменяются и у них только две возможности - изменение численности или вымирание. В качестве подтверждения используется, например, находка живого ископаемого - кистепёрой рыбы - латимерии, которая как считалось, вымерла около 70 млн. лет назад. Большая часть доводов в пользу этой гипотезы связана с такими неясными аспектами эволюции, как значение разрывов в палеонтологической летописи.
  6.1.5. Гипотеза панспермии
  Панспермия - гипотеза о повсеместном распространении во Вселенной зародышей живых существ. Согласно панспермии, в мировом пространстве рассеяны зародыши жизни (например, споры микроорганизмов), которые движутся под давлением световых лучей, а, попадая в сферу притяжения планеты, оседают на её поверхности и закладывают на этой планете начало живого.
  В 1865 г. немецкий врач Г. Рихтер выдвинул гипотезу "космозоев" (космических зачатков), в соответствии с которой жизнь является вечной и зачатки, населяющие мировое пространство, могут переноситься с одной планеты на другую. Сходную гипотезу - гипотезу панспермии - в 1907 г. выдвинул известный шведский естествоиспытатель С. Аррениус, предположив, что во Вселенной вечно существуют зародыши жизни. С. Аррениус полагал, что частицы живого вещества - споры или бактерии, осевшие на микрочастицах космической пыли, силой светового давления переносятся с одной планеты на другую, сохраняя свою жизнеспособность. При попадании спор на планету с подходящими условиями они прорастают и дают начало биологической эволюции.
  Жизнь занесена на планету извне. Эта гипотеза не предлагает никакого механизма для объяснения первичного возникновения жизни. Первые опыты Л. Пастера, поставленные во второй половине XIX века показали невозможность в современных условиях Земли зарождения жизни - простейших живых организмов. Это, вероятно, в какой-то степени способствовало возникновению идей панспермии.
  Современный вариант этой идеи можно рассмотреть на примере гипотезы Ф. Хойла о возможности существования микроорганизмов в межзвёздном пространстве. Согласно его представлениям облака межзвёздной пыли сложены в основном бактериями и спорами, которые и были внесены на Землю около 4.5 млрд. лет назад. Согласно расчетам, произведенным им и С. Викрамасингом, ежегодно в верхнюю атмосферу Земли поступает 1018 космических спор. Таким образом, кометы являются переносчиками жизни, которые образовались сначала в межзвёздном пространстве и только потом попали в облако Оорта*.
  6.1.6. Теория биохимической эволюции
  Гипотеза А. И. Опарина о возникновении жизни на Земле опирается на представление о постепенном усложнении химической структуры и морфологического облика предшественников жизни (пробионтов) на пути к живым организмам. На стыке моря, суши и воздуха создавались благоприятные условия для образования сложных органических соединений. В концентрированных растворах белков, нуклеиновых кислот могут образовываться сгустки подобно водным растворам желатина.
  А. И. Опарин назвал эти сгустки коацерватными каплями или коацерватами. Коацерваты - это обособленные в растворе органические многомолекулярные структуры. Это еще не живые существа. Их возникновение рассматривают как стадию развития преджизни. Наиболее важным этапом в происхождении жизни было возникновение механизма воспроизведения себе подобных и наследования свойств предыдущих поколений. Это стало возможным благодаря образованию сложных комплексов нуклеиновых кислот и белков. Нуклеиновые кислоты, способные к самовоспроизведению, стали контролировать синтез белков, определяя в них порядок аминокислот. А белки-ферменты осуществляли процесс создания новых копий нуклеиновых кислот. Так возникло главное свойство, характерное для жизни - способность к воспроизведению подобных себе молекул.
  Жизнь возникла в результате процессов, подчиняющихся химическим и физическим законам. Теория происхождения первых живых существ из неживой материи была выдвинута Пфлюгером, Дж. Холдейном и Р. Бейтнером, но особенно детально она разработана советским биохимиком академиком А. И. Опариным в его книге "Возникновение жизни" (1936). Ещё в 1923 г. он высказал мнение, что атмосфера первичной Земли была не такой как сейчас. Она состояла из простых соединений, содержащих воду, аммиак, двуокись углерода и метан. До тех пор пока температура Земли не упала ниже 100°C вся вода находилась в парообразном состоянии. Атмосфера, видимо, была восстановительной*. Отсутствие в атмосфере кислорода было необходимым условием возникновения жизни.
  Исходя из теоретических предположений, он полагал, что органические вещества, возможно углеводороды, могли создаваться в океане из более простых соединений; энергию для этих реакций синтеза, вероятно, доставляла интенсивная солнечная радиация. Разнообразие находившихся в океане соединений, площадь поверхности Земли, доступность энергии и масштабы времени позволяют предположить, что в океанах постепенно накопились органические вещества и образовался тот "первичный бульон", в котором могла возникнуть жизнь. Главной проблемой для этой теории является необходимость объяснить появление способности живых систем к самовоспроизведению.
  Чтобы определить вероятность возникновения белков, необходимых для функционирования простейшей клетки в результате случайного взаимодействия аминокислот английский астроном, Ф. Хойл и математик Ч. Викрамасингх произвели следующие вычисления. В жизнедеятельности простейшей бактерии участвует примерно 2000 различных белков, состоящих в среднем из 300 аминокислот. Функции и свойства белка зависят от последовательности, в которой аминокислоты расположены в его цепи. Поскольку в состав белков входит 20 типов аминокислот, вероятность образования белка с заданной последовательностью аминокислот равняется 1·20. Существует определённый диапазон, в пределах которого последовательность 300 аминокислот может варьировать без заметных изменений свойств белка. Поэтому Хойл и Викрамасингх увеличили вероятность возникновения белка с заданными свойствами до 10. Так как для функционирования клетки необходимо, по крайней мере, 2000 белков, они оценили вероятность случайного возникновения простейшей самовоспроизводящейся системы величиной 1·1040000. Вероятность такого события практически равна нулю.
  Существующие гипотезы пока не в состоянии дать убедительный ответ на этот вопрос. Вот пример одной из таких гипотез, пытающихся объяснить возникновение живого, исходя из поведения такого тривиального явления как капля воды. Группа биофизиков из МГУ рассуждает следующим образом: с точки зрения биофизики основа основ жизни - устойчивое неравновесие, то есть живой организм или отдельная клетка должны обладать запасом энергии, который создается постоянным обменом веществ с окружающей средой. Самый простой способ создания такого неравновесия - асимметричное или, как говорят специалисты, инвертированное распределение ионов натрия и калия.
  В результате концентрация нужного элемента в околоклеточной жидкости может достигать десятикратного превосходства по сравнению с окружающей средой. Ведает подобным распределением мембрана, пропускающая какие-то ионы внутрь и не выпускающая их наружу. Но как клетка научилась такой избирательности? В поисках ответа ученые обратили внимание на то, что поверхностный слой океана может накапливать ионы калия и других микроэлементов за счет неравновесных термодинамических процессов между водой и атмосферой. А лабораторные опыты позволили зарегистрировать разность потенциалов в несколько милливольт между поверхностной пленкой и находящейся под ней так называемой объемной фазой. Она образуется морской волной, захватывающей в толщу воды большое количество воздуха, который, поднимаясь, затем создает пену, брызги, пузырьки разного диаметра. Схлопываясь, пузырек воздуха выбрасывает на несколько сантиметров вверх струйку воды, распадающуюся на массу мелких капель. Последние скользят по поверхностной пленке океана, их так и называют - пленочные капли. В них-то и накапливаются ионы калия. Но чтобы стать подобием живой клетки, такой капельке нужна еще и водонепроницаемая оболочка - прообраз клеточной мембраны. Как она может возникнуть? Оказывается, в некоторых районах океана поверхностная пленка содержит жировые или липидные молекулы небиологического происхождения. Они всегда располагаются строго определенным образом, окутывая капельку. Не в таких ли колыбельках зародилась жизнь?
  6.2. Структура живого вещества
  Признаки живого вещества. Питание. Дыхание. Раздражимость. Подвижность. Выделение. Размножение. Рост. ( Виды регуляции организма. Саморегуляция. Роль мембран в процессах регуляции. ( Иерархический контроль живых систем. Роль биологического узнавания.( Постоянство внутренней среды. Развитие представлений о гомеостазе. Формы и уровни управления в живых системах.
 
  Так как нам неизвестна тайна происхождения жизни, то мы не в состоянии выделить фундаментальный признак (или признаки), отделяющий живое от неживого. Сегодня, в качестве такого признака выступает молекула ДНК, несущая в себе наследственную информацию, но ситуация может измениться. Кроме того, раскрыть тайну происхождения жизни, значит ответить на вопрос: почему и как образовалась эта молекула. Ответ на этот вопрос особенно важен именно тогда, когда мы начинаем активно вторгаться в генетическую структуру живого вещества и, не зная, как возникла жизнь, по сути вслепую манипулируем конечными следствиями её существования. Поэтому важно хотя бы наиболее полное понимание структуры и признаков живого вещества.
  6.2.1. Признаки живого вещества
  Не существует строгого определения, что такое жизнь. Вместо формулирования заведомо неполного представления о ней лучше попытаться представить жизнь через совокупность её наиболее существенных признаков.
  Первым из таких признаков является:
  1. Питание. Оно служит для живых организмов источником энергии и веществ. Растения усваивают энергию непосредственно, через процесс фотосинтеза. Животные и грибы через расщепление чужой органики. Первые именуются автотрофами, а вторые - гетеротрофами.
  2. Дыхание. Одной из основных его функций является освобождение энергии при расщеплении высокоэнергетических соединений. Высвобождаемая при этом энергия запасается в молекулах АТФ*.
  3. Раздражимость является способностью реагировать на изменение внешней и внутренней среды.
  4. Подвижность следует понимать не только как действие, ведущее к изменению положения в пространстве, например, для растений это менее всего характерно, но в большей степени как общий приспособительный элемент адаптационного поведения, чаще всего выраженный в изменении пространственных координат.
  5. Выделение является выведением из организма конечных продуктов обмена веществ.
  6. Размножение. Его эволюционная роль заключается в сохранении главных признаков родителей у потомства.
  7. Рост - это один из наименее специализированных признаков живого вещества. Он характерен и для неживой материи, например, кристалл, но и здесь существуют различия. Так кристалл растёт "снаружи", присоединяя новое вещество к поверхности, а живое растёт "изнутри".
  6.2.2. Виды регуляции организма
  Жизнь начинается тогда, когда в живой элементарной конструкции - клетке начинается саморегуляция, обеспечивающая смену поколений, приспособление к меняющимся условиям внешней среды и к взаимодействию клеток друг с другом. Тысячи ферментных процессов координируются клеткой, обеспечивая циклику ее развития. Это же относится к комплексу клеток и, наконец, к организму в целом.
  В регуляции жизнедеятельности организма чрезвычайно велика роль мембран*. Это одно из основных звеньев регуляторного механизма. Меняющаяся проницаемость мембран определяет взаимоотношения клетки с внешней средой и другими клетками, ядерные мембраны определяют взаимоотношения ядра с протоплазмой. Мембранные системы митохондрий*, опять-таки не только осуществляют, но и регулируют приготовление универсальных энергетических ресурсов клетки, а протоплазменные мембраны участвуют в регулируемом синтезе веществ.
  Не следует забывать, что решающую роль мембраны играют, одевая все нервные проводники. Нервные импульсы, распространяющиеся по сотням миллионов нервных волокон в организме, по существу говоря, обусловлены процессами быстро распространяющихся состояний - изменений ионной проницаемости в мембранах нервного волокна. Говоря несколько упрощенно, нервные связи и даже интегративная деятельность мозга, в какой-то мере, обусловлены мембранными процессами.
  Все заболевания и, в частности, повреждающее действие радиации - это, прежде всего, расстройство регуляции. Проникающая в клетку вирусная частица, вмешиваясь в регуляцию клеточных процессов, меняет программу синтетической деятельности клетки, которая прекращает свой нормальный синтез и начинает приготовлять вирусные частицы. В настоящее время в эксперименте показано, что ядро взрослой нервной клетки, которое, как известно, не делится, пересаженное в дробящуюся клетку яйца, начинает служить новому хозяину и, под влиянием расшифрованных теперь химических регуляторов, меняет программу синтеза нуклеиновой кислоты и начинает быстро делиться.
  Рассматривать гены в ядре как единственную управляющую систему - это сегодня уже упрощение. Нет по существу равновесия ни в клетке, ни в организме, ни в биосфере в целом. Имеется некая динамическая циклика процессов и, если нарушается регуляция этой циклики и выбросы превышают разрешенную амплитуду, наступает заболевание или гибель в клетке или в организме и катастрофические последствия в живой природе в целом. В клетке циклика развития проявляется, например, в периодическом клеточном делении. Определенная циклика характерна и для живого организма.
  В качестве примеров регуляции живого организма можно назвать следующие параметры:
  * Регуляция содержания дыхательных газов в крови.
  * Регуляция уровня метаболитов в крови.
  * Регуляция ритма сердца и кровяного давления.
  * Защита от инфекции.
  * Терморегуляция.
  Совокупность живых организмов таксономируется. Таксоны реальны. Они обладают собственной пространственно-временной структурой. Живые системы подчинены иерархическому контролю, что означает возможность прямых или опосредованных контролирующих воздействий таксонов друг на друга.
  Системное единство каждого уровня обеспечивается процессом биологического узнавания. Уровни организации живых систем выражаются следующим образом:
  1. Живая молекула (протоплазма).
  2. Клетка, несущая в себе ДНК, РНК, белки и ферменты.
  3. Организм (особь), в которой реализуется наследственная информация.
  4. Вид (популяция) - в его пределах осуществляются конкуренция и естественный отбор.
  5. Биогеосфера, в которой реализуются геохимические функции живого вещества: газовая функция (участвуют все организмы); кислородная (хлорофиллы); окислительная (бактерии); кальциевая (водоросли, бактерии и др.); восстановительная (бактерии); разрушение органических соединений (бактерии, грибы); метаболизм (всё живое).
  6.2.3. Постоянство внутренней среды (гомеостаз)
  Понятие "гомеостаз" (греч. "homoios" - подобный, одинаковый, и "stasis" - состояние) было введено У. Кенноном. Гомеостаз рассматривается как некоторое динамическое постоянство параметров объекта управления в процессе его существования. Механизм поддержания гомеостаза выглядит как иерархическая структура управления, состоящая из трех контуров, причем цели в двух из них соотносятся как противоречащие друг другу и являются объектом управления в некотором третьем контуре.
  Начальный этап исследований выявил относительное динамическое постоянство внутренних свойств (структуры) и внутренней среды организма и устойчивости выполнения им основных функций. Было выяснено, в частности, что для гомеостаза характерна нежесткость требований к параметрам состояния, когда важно, чтобы постоянство соблюдалось только в той степени, которая необходима для нормального функционирования организма в целом (а не для каждого процесса или канала управления в отдельности). Гомеостаз стал одним из кардинальных понятий современной физиологии. Однако структуры и механизмы его поддержания в ходе этих исследований не были раскрыты.
  Следующий этап в развитии представлений о гомеостазе связан с появлением концепции кибернетики. Он формально описал механизм возникновения и поддержания гомеостаза как контур отрицательной обратной связи с задающим сигналом. Фактически этим понятие гомеостаза было признано свойством структурной организации систем, независимо от их природы (естественных и искусственных). С позиций теории управления гомеостаз означает сохранение постоянства внутренней среды системы в ходе реализации любых управленческих программ.
  Классическая линия развития теории управления идейно была определена желанием сохранить схему Н. Винера для объектов любой сложности. Появившиеся в конце 1960-х гг. работы по теории многосвязных систем основывались на простой идее: среди всех выходов системы выделить главный, для которого и надо решать задачу управления. Что касается реакций остальных переменных системы, то их надо сгладить. Эта идея развивается затем в работах по чувствительности и ее минимизации, а затем - в теории инвариантности.
  Применительно к организму (естественной системе) был предложен принципиально иной подход к понятию целей управления. В его основе - строгая семантическая* трактовка сущности иерархической структуры, наличие нелинейных отношений между различными целями управления и обусловленная этим степень внутренней свободы системы, характеризующаяся нежесткостью требований к параметрам состояния. Степень внутренней свободы, присущая предложенному подходу к целям управления такова, что постоянство соблюдается только для системы в целом (а не для каждого процесса или канала управления в отдельности).
  С позиции классической теории управления это условно можно трактовать как нахождение общей части областей устойчивости для различных каналов управления системы "Гомеостаз - путь создания устойчивости в самой управляющей системе за счет подходящей структуры". Можно сказать, что предложенное теоретическое положение стало отправной точкой для формирования теории гомеостатического управления в ее современном понимании, так как положило основу для формирования идейного, понятийного и математического аппарата исследования. В первую очередь была показана сложная организация решения задачи самосохранения в естественных системах.
  Сформированные теоретические представления о гомеостазе стали основой для решения прикладных задач. После появления винеровской модели сразу же были разработаны модели различных физиологических систем в виде одноконтурных систем с постоянной установкой, которая задавала "желаемый" уровень каких-либо веществ в организме (гормонов, водородных ионов и т. п.), темпераы или "очевидных" параметров (напр., давления в системе кровообращения). Однако быстро выяснился основной недостаток такой модели - установка не отражает изменчивости состояния организма в разных условиях.
  Появилось две возможности преодолеть это противоречие:
  1. Первый подход - сделать многоуровневые модели с меняющимся значением установки, где второй уровень управления меняет значения установок для регуляторов низшего уровня, а третий следит за организмом в целом. Этот подход был развит в СССР С. Н. Брайнесом и В. Б. Свечинским, а затем применён для социально-организационных структур.
  2. Другой подход - вообще отказаться от жесткой винеровской схемы (как одно,- так и многоконтурной).
  Практика моделирования пошла по второму пути. Оказалось, во-первых, что в реальных физиологических системах, как правило, не удается обнаружить структуры, где бы производилось используемое в модели "сравнение двух сигналов".
  Во-вторых, выяснилось, что описание физиологического объекта управления в модели Винера передаточной функцией не годится для описания сколько-нибудь сложных систем. В сложной системе, где имеется множество передаточных функций, их надо складывать, умножать, делить. Если одинаковые переменные окажутся в числителе и в знаменателе, то их можно сократить, понизив порядок системы. Но при сокращении теряется информация об исходном состоянии системы - о начальных значениях на всех элиминированных* "интегрирующих звеньях". Система становится "непредсказуемой" - процессы в модели не отражают процессы в реальной системе.
  Выход в этой ситуации был найден Р. Калманом, с работ которого начался новый этап в развитии теории управления. Его сущность состояла в отказе от модели "черного ящика" и переходе к методу пространства состояний, когда само математическое описание системы в виде дифференциальных уравнений содержит полную информацию о ее структуре. В моделировании биологических систем (а к этому времени понятие гомеостаза распространилось и на смежные с физиологией сферы) стали применяться компартментальные* модели, позволяющие смоделировать баланс веществ в системе и сложные формы управления им. Именно здесь и возникла принципиальная возможность построения общего подхода для анализа гомеостаза систем любой природы, как биологической, так и технической.
  6.3. Теории эволюции
  Зарождение эволюционного учения (Ж. Ламарк, Ж. Кювье, Ч. Лайелл). Принципы ламаркизма. Теория катастрофизма Ж. Кювье. Теория актуализма Ч. Лайелла. ( Эволюционная теория естественного отбора (Ч. Дарвин, А. Уоллес). Формы изменчивости. Концепция естественного отбора. Отбор, наследственность, изменчивость. ( Номогенез как альтернатива дарвинизму и как его дополнение. Эволюция биосферы как разворачивание многовариантной программы (Л. С. Берг). Направления в теории номогенеза. ( Вид и видообразование. Вид как качественный этап эволюции. Роль изолирующего механизма. Виды изоляции. ( Проблемы видообразования. Популяции как элементарные эволюционные единицы. Дем. Генетическая популяция.
 
  Теория эволюции занимает особое место в изучении истории жизни. Она стала той объединяющей теорией, которая служит фундаментом для всей биологии. Теория эволюции в биологии подразумевает развитие сложных организмов из предсуществующих более простых организмов с течением времени. Представление об эволюции ведёт начало не от Дарвина. Ещё задолго до него попытки человека объяснить очевидное разнообразие окружающих его живых организмов парадоксальным образом привлекли внимание к чертам структурного и функционального сходства между ними. Выдвигались различные эволюционные гипотезы, чтобы объяснить это сходство.
  6.3.1. Зарождение эволюционного учения
  (Ж. Ламарк, Ж. Кювье, Ч. Лайель)
  В 1809 году вышла в свет "Философия зоологии" французского учёного Жана Батиста Пьера Антуана де Моне Ламарка (1744-1829). В этой работе была предпринята первая попытка создания теории эволюции видов. Она оказалась неудачной. Ламарк построил свою теорию на следующих двух положениях:
  * Во всех живых существах заложено внутреннее стремление к совершенствованию. Оно является движущей силой эволюции. Действием этого фактора определяется развитие живой природы, постепенное, но неуклонное повышение организации живых существ от простейших до самых совершенных. Его результатом является одновременное существование в природе организмов разной степени сложности, как бы образующих иерархическую лестницу существ.
  * Внешняя среда непосредственным образом влияет на изменение формы тех или органов живых существ. "У каждого животного, не завершившего ещё своего развития, более частое и продолжительное употребление какого-нибудь органа укрепляет этот орган, развивает его, увеличивает и придаёт ему силу, пропорциональную продолжительности употребления, тогда как постоянное отсутствие употребления какого-либо органа постепенно его ослабляет, приводит к упадку и заставляет его исчезнуть".
  Он ошибался так как, естественно, не знал различий между генотипом и фенотипом. Упражнением или неупражнением можно изменить фенотип, но не генотип. Чтобы доказать, что фенотипические изменения не передаются по наследству, А. Вейсман провёл многолетний эксперимент, в котором на протяжении многих последовательных поколений укорачивал мышам хвосты. По теории Ламарка вынужденное неупотребление хвостов должно было привести к их укорочению у потомства, но этого не произошло. Вейсман на этом основании постулировал, что признаки, приобретаемые телом и приводящие к изменению фенотипа, не оказывают прямого воздействия на половые клетки (гаметы), с помощью которых признаки передаются следующему поколению.
  В противоположность Ж. Ламарку Ж Кювье, исходя из особенностей строения нервной системы, сформулировал в 1812 г. учение о 4 "ветвях" (типах) организации животных: позвоночные, членистые, мягкотелые и лучистые. Между этими типами он не признавал никаких связей и переходов. В пределах типа позвоночных он различал 4 класса: млекопитающие, птицы, земноводные, рыбы. Описал большое число ископаемых форм и выявил принадлежность многих из них к определённым слоям земной коры. Ж. Кювье впервые предложил по ископаемым останкам определять возраст геологических слоёв, и наоборот. Основываясь на принципах "корреляции органов" и "функциональной корреляции", он разработал метод реконструкции ископаемых форм по немногим сохранившимся фрагментам скелета.
  Отстаивая религиозные представления о сотворении и неизменности видов и отсутствии переходных форм между видами, он, для объяснения смены фаун и флор, наблюдаемых в последовательных геологических пластах, выдвинул теорию катастроф. В катастрофизме геологическая история Земли рассматривается как чередование длительных эпох относительного покоя и сравнительно коротких катастрофических событий, резко преображавших лик планеты. Согласно этой теории, в результате стихийных периодических бедствий на значительной части земного шара погибало всё живое, после чего его поверхность заселялась новыми формами, пришедшими из других мест. Концепция катастрофизма и неоднократных творческих актов согласовывалась с библейской концепцией творения мира. Благодаря идеям Ж. Кювье, широко распространились идеи о прогрессе в органическом мире и об эпизодических событиях, нарушающих однообразие в истории Земли. Это способствовало формированию представлений о сочетании эволюционного и скачкообразного развития50.
  В 1830-33 г. был издан труд английского естествоиспытателя Ч. Лайелла "Основы геологии". В этой работе в противовес популярной в то время теории катастрофизма он разработал учение о медленном и непрерывном изменении земной поверхности под влиянием постоянных геологических факторов, действующих и в современную эпоху (атмосферные осадки, текучие воды, извержения вулканов и т. д.). Эволюционная теория Ч. Лайелла (актуализм) явилась крупным шагом на пути к материалистическому пониманию природы. Ч. Лайелл считал действующие на Земле силы постоянными по качеству и интенсивности, не видел их изменения во времени и связанного с этим развития Земли51.
  6.3.2. Эволюционная теория естественного отбора
  (Ч. Дарвин, А. Уоллес)52
  Чарльз Дарвин в своем основном труде "Происхождение видов путем естественного отбора" (1859) обобщил эмпирический материал современной ему биологии и селекционной практики, на основе результатов собственных наблюдений во время путешествий, кругосветного плавания на корабле "Бигль", раскрыл основные факторы эволюции органического мира. В книге "Изменение домашних животных и культурных растений" (т .1-2, 1868) он изложил дополнительный фактический материал к основному труду, а в книге "Происхождение человека и половой отбор" (1871) выдвинул гипотезу происхождения человека от обезьяноподобного предка. В основе теории Дарвина - свойство организмов повторять в череде поколений сходные типы обмена веществ и индивидуального развития в целом - свойство наследственности.
  Наследственность вместе с изменчивостью обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы. Одно из основных понятий своей теории эволюции - понятие "борьба за существование" - Дарвин употреблял для обозначения отношений между организмами, а также отношений между организмами и абиотическими условиями, приводящих к гибели менее приспособленных и выживанию более приспособленных особей.
  Понятие "борьба за существование" отражает те факты, что каждый вид производит больше особей, чем их доживает до взрослого состояния, и что каждая особь в течение своей жизнедеятельности вступает во множество отношений с биотическими и абиотическими факторами среды.
  Дарвин выделил две основные формы изменчивости:
  1. Определенную изменчивость - способность всех особей одного и того же вида в определенных условиях внешней среды одинаковым образом реагировать на эти условия (климат, почву).
  2. Неопределенную изменчивость, характер которой не соответствует изменениям внешних условий. В современной терминологии неопределенная изменчивость называется мутацией.
  Мутация - неопределенная изменчивость в отличие от изменчивости определенной носит наследственный характер. По Дарвину, незначительные изменения в первом поколении усиливаются в последующих поколениях. Дарвин подчеркивал, что решающую роль в эволюции играет именно неопределенная изменчивость. Она связана обычно с вредными и нейтральными мутациями, но возможны и такие мутации, которые оказываются перспективными.
  Неизбежным результатом борьбы за существование и наследственной изменчивости организмов, по Дарвину, является процесс выживания и воспроизведения организмов, наиболее приспособленных к условиям среды, и гибели в ходе эволюции неприспособленных - естественный отбор.
  Механизм естественного отбора в природе действует аналогично селекционерам, то есть складывает незначительные и неопределенные индивидуальные различия и формирует из них у организмов необходимые приспособления, а также межвидовые различия. Этот механизм выбраковывает ненужные формы и образовывает новые виды.
  Тезис о естественном отборе наряду с принципами борьбы за существование, наследственности и изменчивости - основа дарвиновской теории эволюции.
  Во времена Дарвина наследственность представляли как некое общее свойство организма, присущее ему как целому. В связи с этим шотландский исследователь Флеминг Дженкинс вошел в историю биологии, выдвинув возражения против теории Дарвина. Он считал, что новые полезные признаки некоторых особей данного вида должны быстро исчезнуть при скрещивании с другими, более многочисленными особями. Возражения Дженкинса сам Дарвин считал очень серьезными, окрестив их "кошмаром Дженкинса". Эти возражения были опровергнуты, только когда стало ясно, что аппарат наследственности сформирован отдельными структурными и функциональными единицами - генами.
  Согласно Ч. Дарвину и А. Уоллесу, механизмом, с помощью которого из предсуществовавших видов возникают новые виды, служит естественный отбор. Эта гипотеза основана на трёх наблюдениях и двух выводах:
  * Наблюдение 1. Особи, входящие в состав популяции, обладают большим репродуктивным потенциалом. Дарвин и Уоллес зафиксировали этот факт во многом благодаря работе Т. Мальтуса "Трактат о народонаселении". В ней Т. Мальтус привлёк внимание к репродуктивному потенциалу человека и отметил, что численность народонаселения возрастает по экспоненте.
  * Наблюдение 2. Число особей в каждой данной популяции примерно постоянно. Численность всех популяций ограничивается или контролируется различными факторами среды, такими как пищевые ресурсы, пространство и свет. Размеры популяции возрастают до тех пор, пока среда ещё может выдерживать их дальнейшее увеличение, после чего достигается некое равновесие. Численность колеблется около этого равновесного уровня.
  * Вывод 1. Многим особям не удаётся выжить и оставить потомство. В популяции происходит "борьба за существование". Непрерывная конкуренция между индивидуумами за факторы среды в пределах одного вида или между представителями разных видов приводит к тому, что некоторые организмы не смогут выжить или оставить потомство.
  * Наблюдение 3. Во всех популяциях существует изменчивость. Огромный фактический материал, собранный во время путешествий Дарвином и Уоллесом убедили их в значимости внутривидовой изменчивости. Но они не смогли выявить источники всех этих форм изменчивости. Это позже сделает Г. Мендель.
  * Вывод 2. В "борьбе за существование" те особи, признаки которых наилучшим образом приспособлены к условиям жизни, обладают "репродуктивным преимуществом" и производят больше потомства, чем менее приспособленные особи. Решающий фактор, определяющий выживание, - это приспособленность к среде. Любое, самое незначительное физическое, физиологическое или поведенческое изменение, дающее одному организму преимущество перед другим, будет действовать как "селективное преимущество". Благоприятные изменения будут передаваться следующим поколениям, а неблагоприятные отметаются отбором, так как они невыгодны организму. Вывод 2 содержит гипотезу о естественном отборе, который может служить механизмом эволюции.
  Теория эволюции, предложенная Дарвином и Уоллесом, была расширена и разработана в свете современных данных генетики, палеонтологии, молекулярной биологии, экологии и этологии и получила название неодарвинизма. Его можно определить как теорию органической эволюции путём естественного отбора признаков, детерминированных генетически. Чтобы признать эту теорию достоверной необходимо:
  * Установить факт изменения форм жизни во времени (эволюция в прошлом).
  * Выявить механизм, производящий эволюционные изменения (естественный отбор генов)
  * Продемонстрировать эволюцию, происходящую в настоящее время (эволюция в действии).
  Свидетельствами эволюции, происходившей в прошлом, служат ископаемые остатки организмов и стратиграфия. Данные о механизме эволюции получают путём экспериментальных исследований и наблюдений, касающихся естественного отбора наследуемых признаков и механизма наследования, демонстрируемого классической генетикой. Сведения о действии этих процессов в наше время даёт изучение популяций современных организмов, результаты искусственного отбора и генной инженерии.
  Пока не существует твёрдо установленных законов эволюции. Мы обладаем лишь хорошо подкреплёнными фактическими данными из области палеонтологии, географии распространения видов, системы классификации К. Линнея, селекции растений и животных, сравнительной анатомии, сравнительной эмбриологии, сравнительной биохимии гипотезами, которые в совокупности составляют достаточно обоснованную теорию53.
  6.3.3. Номогенез как альтернатива дарвинизму и как его дополнение
  Само понятие номогенез, и аргументы в пользу того, что, вопреки Дарвину, эволюция отнюдь не случайный, но закономерный процесс подробно обосновал Л. С. Берг в своих классических работах 20-х годов, из которых главная и наиболее известная - "Номогенез, или эволюция на основе закономерностей". Берг формулирует проблему так:
  * Является ли эволюция случайным процессом, который обусловлен лишь двумя факторами: хаотическими мутациями и естественным отбором, или же эволюция - это процесс в своей основе закономерный, выявление некоторой тенденции, имманентного* закона, который и направляет ее ход?
  В такой постановке вопрос может показаться не вполне корректным и даже беспредметным, ведь и случайные в своей основе процессы могут подчиняться весьма строгим статистическим законам. Более точно его суть можно уяснить из простой аналогии:
  хотя на развитие отдельного оргaнизмa влияет множество случайных факторов, но нет сомнения и в том, что главным, определяющим является фактор внутренней информации, заложенной в генах. Вся его история, curriculum vitae*, есть рaзворaчивaние, реaлизaция программы, от которой только и зависит, что же вырастет, например, из данного семени береза или сосна.
  Вся эволюция биосферы есть, согласно Бергу разворачивание, какого-то закона, или может быть правильнее сказать, многовариантной программы, в которой содержатся и многочисленные способы ее реализации. Поэтому Берг и назвал свою концепцию номогенезом, противопоставив ее дарвиновской концепции "тихогенеза", то есть развитию, основанному на случайности. Можем ли мы сегодня, хотя бы в самых общих контурах представить себе, как же выглядит этот закон? Нет, но наше незнание вовсе не означает, что такого закона нет.
  Представим себе, что некий математик, исследующий таблицы случайных чисел, с удивлением обнаруживает в них устойчивые повторения, "мотивы", "ритмы и рифмы", "гомологии", присутствие которых никак нельзя объяснить игрой случая. Пусть далее нечто подобное он сможет найти и в других последовательностях, полученных с помощью независимых и различных по устройству генераторов. Какую гипотезу вправе выдвинуть такой математик? Он может, прежде всего, предположить, что исследуемые им ряды вовсе не случайны, но есть достаточно замысловатое проявление неизвестной ранее природной закономерности.
  В своих работах Берг суммирует огромный фактический материал, накопленный уже к началу 20 века, который и свидетельствует в пользу номогенетической природы эволюции. Этот материал говорит о присутствующих в системе форм живого многочисленных "ритмах и рифмах", которые невозможно назвать случайными. В качестве примера приведём факт так называемого предварения признаков (филогенетическое ускорение). Известно, что в эмбриональной фазе наблюдаются признаки тех стадий, через которые предположительно прошла эволюция данной группы. В свое время Э. Геккель, горячий сторонник и пропагандист дарвинизма, сформулировал правило, получившее название биогенетического закона: онтогения повторяет филогению. Почему-то считается, что он служит прямым аргументом в пользу дарвиновской концепции, хотя его можно понимать лишь как свидетельство того, что эволюция вообще имеет место, в чем, конечно же, мало кто сомневается.
  Гораздо реже обсуждается факт, что имеет место и обратное, симметричное по времени явление: "индивидуальное развитие может не только повторять филогению, но и предварять ее". Это правило применимо не только к отдельным организмам, но и к целым их группам: филогения какой-либо группы может опережать свой век, осуществляя формы, которые в норме свойственны более высоко стоящим в системе организмам. Это значит, что признаки, которые появляются в результате предварения, не могли получиться как результат действия дарвиновского механизма. Как индивидуальное развитие, эволюция есть процесс разворачивания, реализации уже существующей программы.
  Номогенетическое направление в теории эволюции аналогично номотетическому* в систематике. Для лучшего понимания полезно сказать несколько слов о классификации вариантов эволюционных теорий:
  * номогенетический - наличие специфических законов развития или ограниченности формообразования;
  * эктогенетический - роль внешних факторов в эволюции;
  * телогенетический - роль активной адаптации.
  Теорию номогенеза можно разделить на два направления:
  Учение об ограниченности формообразования.
  Изменчивость во времена Дарвина считалась неограниченной, подобно "восковой пластичности". Это доказывалось тем, что любой признак показывал большую или меньшую изменчивость. Задолго до Менделя заметили, что при плодовитом скрещивании наблюдается какая-то особенно расшатанная изменчивость, как будто не подчиняющаяся никаким законам. Мендель этот мнимый хаос подчинил строгим математическим законам: при этом вместо восковой пластичности, допускающей бесконечно большое число возможных модальностей, мы получаем не только конечное, но даже не очень большое число их. Несколько поднявшись по таксономическому уровню, мы встречаем закон гомологических рядов Н. И. Вавилова (1920).
  Третьей формой номогенеза в этом понимании можно считать то, что называется биохимическим номогенезом, например, биохимические отличия первично- и вторичноротых. Важное вещество, используемое первичноротыми для построения наружного скелета - хитин - полностью отсутствует в двух главных типах вторичноротых - у иглокожих и позвоночных. У иглокожих и позвоночных развивается внутренний известковый скелет на соединительно-тканной основе и сгибаемость корпуса или антимер получается от сочленения внутренних известковых элементов или позвонков (позвоночный столб позвоночных и руки).
  Наконец, четвертую форму номогенеза в смысле ограниченности формообразования можно назвать телогенетическим номогенезом, то есть сходным разрешением определенных задач, независимо от природы факторов, осуществляющих это разрешение. Это явление давно известно (сходство ихтиозавров, дельфинов и рыб, глаз позвоночных и головоногих), но вся широта осознается недостаточно и некоторые интересные направления мало известны.
  Учение об ограниченности формообразования намечает возможности прогноза форм живых существ на других планетах. Здесь наблюдается огромный разнобой мнений от допущения вероятности возникновения и существования организмов, настолько близких человеку, что возможно продуктивное скрещивание, до отрицания какого-либо предвидения особенностей строения инопланетных существ. Первая крайность вряд ли может защищаться серьезным биологом, но такие образования, как, скажем, ДНК, хромосомы, клетка, кишечник, метамерия, конечности, хитин, возникают или могут возникать в очень сходном виде не только параллельно, но и конвергентно*. Принципиальная возможность существования растений и животных на других планетах не отрицается, следовательно, для высших таксонов мыслимо самостоятельное возникновение.
  Можно предположить, что типы, а может быть и некоторые классы, могут возникнуть самостоятельно, и на далеких планетах мы вправе ожидать встречи с организмами, которые мы отнесем к простейшим, кишечнополостным, аннелидам, членистоногим и даже насекомым. Встретив на другой планете разумное существо, мы, конечно, отличим его от человека. Но, скорее всего, кое-какие признаки сходства будут: у него впереди будет голова, в которой будет развитой мозг, будут парные глаза, построенные согласно требованиям геометрической оптики, будут парные конечности, передние конечности будут орудиями труда, а не передвижения, значит, будут иметь подобие пальцев, хотя число и строение этих пальцев могут быть совершенно отличными от наших. Одно из названий геометрии Лобачевского было "воображаемая геометрия". Сейчас назрела надобность в "воображаемой биологии"
  Учение о направленных путях развития.
  Ограниченность формообразования не накладывает никаких ограничений на форму путей развития. Но наряду с ненаправленной, зигзагообразной эволюцией, которая, несомненно, существует на низшем уровне эволюции, существуют и направленные формы, которые давно обозначались разными терминами, особенно популярен термин "ортогенез", или прямолинейное развитие. Ортодоксальные дарвинисты резко критиковали теорию ортогенеза: отрицалось, что ортогенез есть главный и даже единственный модус эволюции, и это возражение вполне резонно; критиковалось причинное объяснение ортогенеза как результата воздействия внешних условий и предлагался другой термин - "ортоэволюция"; указывались случаи развития по спирали, где говорить о прямолинейном развитии не приходится; наконец, так как главное свидетельство ортогенеза - параллельное развитие - получает все более мощную фактическую поддержку, дарвинисты пытаются спасти положение, объясняя этот параллелизм селекцией в том же направлении, предложив термин "ортоселекция".
  Конечно, термины "ортоселекция", "ортогенез" и прочие не вполне точны. Но есть и другая форма номогенетического направленного развития, которую можно назвать номогенезом только в начальной стадии, подобно тому, как ядро летит из пушки первое время почти по прямой линии. Эта форма развития заключает три отрезка:
  1. Очень быстрая прогрессивная эволюция, частный случай - ароморфозы по терминологии А.Н. Северцева;
  2. Переход вертикальной линии в горизонтальную - консервативная эволюция;
  3. Идиодаптация Северцева - это частный случай, а не общий закон, так как эволюция может и не быть адаптивной;
  регрессивный этап: потеря изменчивости, регрессивное развитие и вымирание. Видимо, в ряде случаев возможен выход из тупика эволюции путем педогенеза* или иначе.
  6.3.4. Вид и видообразование
  Единицей классификации, как для растений, так и для животных, служит вид. Можно в самом общем смысле определить вид как популяцию особей, обладающих сходными морфологическими и функциональными признаками, имеющих общее происхождение и в естественных условиях скрещивающихся только между собой.
  Можно также определить вид как совокупность популяций, внутри которых возможно скрещивание или как группу популяций с общим генофондом. Любое из этих определений подразумевает как главное: один вид отделён от другого репродуктивной преградой, между ними невозможно скрещивание.
  Решить проблему видообразования - значит, объяснить каким образом элементарные эволюционные изменения в популяции могут привести к образованию новых видов, родов, семейств и отрядов и как возникают преграды, препятствующие скрещиванию между зарождающимися видами. Всякий фактор, затрудняющий скрещивание между группами или организмами, называется изолирующим механизмом.
  Один из самых обычных видов изоляции - это географическая изоляция, при которой группы родственных организмов бывают разделены какой-то физической преградой. Например, в горах на данную площадь обычно приходится больше разных видов, чем на такую же площадь на равнине. Как правило, географическая изоляция не бывает постоянной: разобщённые близкородственные группы иногда вновь встречаются и могут продолжить скрещивание, если только за это время между ними не возникло генетической изоляции, то есть стерильности при скрещивании. Генетическая изоляция бывает обусловлена мутациями, возникающими случайно, независимо от других мутаций, влияющих на морфологические или физиологические признаки. Поэтому в одних случаях она может наступить очень нескоро, когда длительная географическая изоляция создаст заметные различия между двумя группами организмов, а в других случаях может возникнуть в пределах одной, во всём остальном гомогенной группы.
  Обычно потомки от скрещивания между разными видами бывают стерильны, однако, иногда в результате гибридизации представителей двух разных, но очень близких видов, возникает новый вид. Гибридная форма может объединить в себе лучшие признаки обоих родительских видов, в результате чего получится новая форма, лучше приспособленная к среде, чем каждая из исходных форм или, наоборот, - худшие признаки с соответствующим исходом.
  Изоляция, необходимая на начальных стадиях видообразования, может обеспечиваться не только географическими преградами между популяциями: иногда обособленные группировки особей возникают в пределах одной популяции, и это может привести к формированию новых видов. Такой способ видообразования называется "симпатрическим" (от латинских слов sim - вместе и patria - родина). Этот способ отличается от предыдущего только факторами изоляции, причины же, приводящие к морфологической дивергенции и становлению системы изолирующих механизмов, те же, что и в случае географического видообразования.
  При экологическом видообразовании изолирующим фактором являются естественный отбор (особая его форма - дизруптивный или раздробляющий отбор) в сочетании с неоднородностью среды обитания. Для успешного завершения процесса видообразования изоляция должна быть как можно более полной и существовать длительное время. Эти условия в природной обстановке трудновыполнимы, поэтому примеры экологического видообразования довольно редки.
  Теоретически экологическое видообразование может происходить и при отсутствии первичной изоляции между зарождающимися видами. Для этого необходимо, чтобы в популяции действовал дизруптивный отбор, непосредственно направленный на формирование системы изолирующих механизмов. Такой вывод сделан на основе анализа компьютерных моделей и подтверждается в экспериментах с плодовой мушкой дрозофилой. Вероятно, что именно таким образом - в результате экологического видообразования без первичной изоляции - произошли комплексы близкородственных видов рыб в изолированных озерах.
  6.3.5. Проблемы видообразования
  Эволюция каждой данной формы живых организмов происходит на протяжении многих поколений. За это время многие особи рождаются и умирают, но популяция сохраняет непрерывность. Таким образом, эволюционирующей единицей оказывается не особь, а популяция. Популяция сходных особей, живущих на ограниченной территории и скрещивающихся между собой, называется демом или генетической популяцией. Следующей более крупной категорией служит вид, состоящий из ряда слабо разграниченных демов.
  В природе демы и виды имеют тенденцию оставаться неизменными на протяжении многих поколений. Такая неизменность означает, что за это время не произошло никаких изменений ни в генетической конституции дема, ни в условиях окружающей среды влияющих на выживание данных организмов. Каждая популяция характеризуется определённым генофондом. Каждая особь в популяции в генетическом отношении уникальна.
  Процесс видообразования должен состоять из двух неразрывных составляющих:
  1. Отклонения формы (центробежная составляющая).
  2. Удержания формы - (центростремительная составляющая).
  Образование новой формы - как таксономической реальности представляет собой результат взаимодействия этих двух процессов.
  Отсюда два вопроса:
  1. Первый вопрос - какова природа изменчивости, то есть что является ее внутренним источником, каковы ее свойства, и что провоцирует изменчивость (в данном контексте, какие внешние обстоятельства).
  2. Второй вопрос - (особенно важный при принятии идеи трансформизма) - как удерживается фактическое разнообразие, то есть, что определяет постоянство формы в поколениях - на исторической и, более того, геологической шкале.
  Можно говорить о "внутренних" причинах и "внешних" условиях видообразования. Два факта - факт разнообразия форм (видов, пород, сортов, особей) и факт постоянства формы в одной генеалогической линии - привели к пониманию изменчивости и наследственности как двух независимых основополагающих факторов, в принципе определяющих возможность такого изменения форм, которое приводит к дискретному и устойчивому во времени разнообразию таксонов. В процессуальном плане изменчивость и наследуемость выступают как факторы центробежный (меняющий) и центростремительный (удерживающий). Их сложное взаимодействие определяет процесс и конечный результат (устойчивое изменение). Эти факторы называют "внутренними" причинами видообразования.
  Есть "внешние условия", благоприятствующие (провоцирующие) или неблагоприятствующие (подавляющие - избирательно или тотально) фенотипическую изменчивость. Это:
  а) демографический фактор, часто сопряженный с географическим или биотопическим фактором (в сумме - пространственное обособление малой группы или - появление малого изолята);
  б) экологический фактор (физическая и репродуктивная выживаемость формы в конкретном экологическом контексте). Последний фактор выступает как мера достаточного соответствия формы среде обитания и как элиминирующий отбор при отсутствии такого соответствия.
  Отношение к "внутренним" и "внешним" факторам видообразования в разных концепциях меняется. Это отношение и определяет суть концепций, то есть, их концептуальный арсенал, смысловое значение центральных понятий (часто одних и тех же терминологически) и лексические приемы.
  6.4. Теория наследственности
  Соотношение доминантных и рецессивных признаков. Закон доминирования Г. Менделя. ( Хромосомная теория наследственности. Хромосомы. ДНК. Типы клеток. Геном. Введение понятий "ген", "генотип", "фенотип" (В. Иогансен)( Структура гена. Расшифровка генетического кода (Г. Гамов, Ф. Крик, М. Ниренберг). ( ДНК, её роль в передаче наследственной информации (Ф. Крик, Д. Уотсон). ( Клеточная теория (Т. Шван, М. Шлейден). Клетка - самовоспроизводящаяся химическая система. Органеллы. ( Биогенетический закон (Э. Геккель, Ф. Мюллер). Эмбриогенез. Роль формообразования в развитии организма.
 
  Теория наследственности, начатая пионерскими работами Г. Менделя в XIX веке и продолженная в наши дни на уровне практического вмешательства человека в наследственную структуру организмов, продолжает стремительно развиваться. Спецификой развития теории наследственности в наши дни является её естественнонаучный характер, основанный на экспериментальном исследовании и конструировании живых организмов. Биотехнологии превращаются в весомую часть структур мирового промышленного производства. Биоинженерия стоит на пороге, вероятно, непредсказуемых по своим последствиям открытий. Философское, этическое, экологическое осмысление уже открытого и реализуемого и тем более ещё не открытого существенно отстают и сегодня не способны нормативно определять те или иные аспекты развития биоинженерии.
  6.4.1. Закон доминирования Г. Менделя
  После повсеместного распространения учения Ч. Дарвина одним из первых критиков, указавших на слабое место в теории, был шотландский исследователь Ф. Дженкинс. В 1867 г. он заметил, что в дарвиновской теории нет ясности в вопросе о том, как осуществляется накопление в потомстве тех или иных изменений. Ведь сначала изменения признака происходят только у некоторых особей. После скрещивания с нормальными особями должно наблюдаться не накопление, а разбавление данного признака в потомстве. То есть в первом поколении остаётся 1/2 изменения, во втором - 1/4 изменения и т. д. вплоть до полного исчезновения этого признака. Ч. Дарвин так и не нашёл ответа на этот вопрос.
  Между тем решение этого вопроса существовало. Его получил преподаватель монастырской школы в Брно (Чехия) Г. Мендель. В 1865 году были опубликованы результаты его работ по гибридизации сортов гороха, где были открыты важнейшие законы наследственности. Автор показал, что признаки организмов определяются дискретными наследственными факторами.
  Он ещё до выхода в свет книги Ч. Дарвина хотел проследить судьбу изменений генотипов в разных поколениях гибридов. Объектом исследования стал горох. Мендель взял два сорта гороха - с жёлтыми и с зелёными семенами. Скрестив эти два сорта, он обнаружил в первом поколении гибридов горох только с жёлтыми семенами. Путём самоопыления полученных гибридов он получил второе поколение. В нём появились особи с зелёными семенами, но их было заметно меньше, чем с жёлтыми. Подсчитав число тех и других, Мендель пришёл к выводу, что число особей с желтыми семенами относится к числу особей с зелёными как приблизительно 3:1.
  Параллельно он проводил серию других опытов с растениями, прослеживая какой-либо признак в нескольких поколениях. В каждом опыте в первом поколении проявлялся только один из родительских признаков. Мендель назвал его доминантным. Временно исчезающий признак он назвал рецессивным. Во всех опытах отношение числа особей с доминантным признаком к числу особей с рецессивным признаком среди гибридов второго поколения было в среднем равно 3:1.
  Итак, можно было утверждать, что при скрещивании растений с противоположными признаками происходит не разбавление признаков, а подавление одного признака другим, в связи с этим необходимо различать доминантные и рецессивные признаки.
  Мендель пошёл в своих экспериментах дальше. Он произвёл самоопыление гибридов второго поколения и получил гибриды третьего, а затем и четвёртого поколения. Он обнаружил, что гибриды второго поколения с рецессивным признаком при дальнейшем размножении не расщепляются ни в третьем, ни в четвёртом поколениях. Так же ведёт себя примерно треть гибридов второго поколения с доминантным признаком. Две трети гибридов с доминантным признаком расщепляются при переходе к гибридам третьего поколения, причём опять-таки в отношении 3:1. Получившиеся при этом расщеплении гибриды третьего поколения с рецессивным признаком и треть гибридов с доминантным признаком при переходе к четвёртому поколению не расщепляются, а остальные гибриды третьего поколения расщепляются, причём снова в отношении 3:1.
  Этот факт демонстрирует важное обстоятельство: особи с одинаковыми внешними признаками могут обладать разными наследственными свойствами, то есть по фенотипу нельзя судить с достаточной полнотой о генотипе. Если особь не обнаруживает в потомстве расщепления, то её называют гомозиготной, если обнаруживает - гетерозиготной54.
  В итоге Г. Менделем был сформулирован закон единообразия гибридов первого поколения: первое поколение гибридов в силу проявления у них лишь доминантных признаков всегда единообразно. Этот закон носит также название первого закона Менделя или закона доминирования. Однако результаты его исследований оставались практически неизвестными почти 35 лет - с 1865 по 1900.
  6.4.2. Хромосомная теория наследственности
  В 1900 году законы Менделя были переоткрыты независимо сразу тремя учеными - Г. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии. В 1909 датский ученый В. Иогансен ввёл понятие "ген" (от греч. слова "происхождение"). К настоящему времени установлено, что ген - единица наследственного материала, ответственная за формирование какого-либо элементарного признака, то есть единица наследственной информации - представляющая собой участок молекулы ДНК.
  Хромосомы - это структурные элементы ядра клетки, которые состоят из молекулы ДНК и белков, содержат набор генов с заключенной в них наследственной информацией.
  Хромосомная теория наследственности, разработанная в 1910-1915 годах в трудах А. Вейсмана, Т. Моргана, А. Стертеванта, Г. Дж. Меллера и других утверждает, что передача признаков и свойств организма от поколения к поколению (наследственность) осуществляется в основном через хромосомы, в которых расположены гены.
  В 1944 году американскими биохимиками (О. Эвери и др.) было установлено, что носителем свойства наследственности является ДНК. С этого времени началось быстрое развитие науки, исследующей основные проявления жизни на молекулярном уровне. Тогда же впервые появился новый термин для обозначения этой науки - молекулярная биология. Молекулярная биология исследует, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и другие явления обусловлены структурой и свойствами биологически важных молекул (главным образом белков и нуклеиновых кислот).
  В 1953 году была расшифрована структура ДНК (Ф. Крик, Д. Уотсон). Расшифровка структуры ДНК показала, что молекула ДНК состоит из двух комплементарных* полинуклеотидных* цепей, каждая из которых выступает в качестве матрицы для синтеза новых аналогичных цепей. Свойство удвоения ДНК обеспечивает явление наследственности.
  Расшифровка структуры ДНК была революцией в молекулярной биологии, которая открыла период важнейших открытий, общее направление которых - выработка представлений о сущности жизни, о природе наследственности, изменчивости, обмена веществ. В соответствии с молекулярной биологией, белки - это очень сложные макромолекулы, структурными элементами которых являются аминокислоты. Структура белка задается последовательностью образующих его аминокислот. При этом из 100 известных в органической химии аминокислот в образовании белков всех организмов используется только двадцать. До сих пор не ясно, почему именно эти 20 аминокислот синтезируют белки органического мира. Вообще, в любом существе, живущем на Земле, присутствуют 20 аминокислот, 5 оснований, 2 углевода и 1 фосфат.
  К концу XIX века в результате повышения оптических качеств микроскопов и совершенствования цитологических методов стало возможно наблюдать поведение хромосом в гаметах* и зиготах*.
  Различают два типа клеток - половые клетки (гаметы) и соматические. В ядре каждой клетки находятся нитевидные хромосомы, представляющие собой гигантские молекулы ДНК в соединении с молекулами белков. В молекулах ДНК содержится вся информация, определяющая генотип данного организма. Отдельные участки хромосомы, ответственные за те или иные наследственные признаки, называются генами. Каждая хромосома содержит несколько сотен генов.
  Каждому виду соответствует определённый набор хромосом, определяемый количеством хромосом и их генными характеристиками. Например, у овса 42 хромосомы, у плодовой мушки дрозофилы 8, у шимпанзе 48, у человека 46 хромосом. Ядро каждой соматической клетки содержит полный набор хромосом, соответствующий данному виду. То есть в каждой клетке организма содержится вся наследственная информация.
  В то же время каждая гамета (половая клетка) имеет в два раза меньше хромосом, чем соматическая клетка. В хромосомный набор соматической клетки входят две половые хромосомы. У женских особей обе половые хромосомы одинаковые (две Х-хромосомы). У мужских особей половые хромосомы разные (X-хромосома и Y-хромосома). Неполовые хромосомы, имеющиеся в соматической клетке, разбиваются на пары. Попавшие в одну пару хромосомы (гомологичные) очень похожи друг на друга. Каждая содержит одно и то же число генов, одинаковым образом расположенных на хромосомных нитях и отвечающих за одни и те же виды признаков.
  Например, у гороха есть пара гомологичных хромосом, каждая из которых содержит ген окраски семян. У этого гена есть две разновидности (аллели) - доминантная и рецессивная, соответственно существуют доминантный и рецессивный аллели. Далее, если в обеих гомологичных хромосомах рассматриваемый ген представлен одинаковыми аллелями, то данная особь гомозиготна по рассматриваемому признаку. Если же в одной хромосоме содержится один аллель, а в другой гомологичной хромосоме другой, то данная особь гетерозиготна. В её фенотипе проявляется признак, отвечающий доминантному аллелю.
  Гамета имеет только одну половую хромосому. У женской особи это всегда X-хромосома. У мужской особи это может быть Х или Y-хромосома. Кроме единичной половой хромосомы гамета содержит по одной хромосоме из каждой пары гомологичных хромосом. При оплодотворении мужская гамета сливается с женской. Оплодотворённая женская гамета (зигота) имеет полный хромосомный набор. В каждой паре гомологичных хромосом одна хромосома получена от отца, а другая от матери. Организм развивается из зиготы посредством клеточных делений. В каждом случае делению клетки предшествует дублирование (удвоение) всех хромосом, содержащихся в ядре клетки. В результате ядро каждой соматической клетки организма содержит тот же самый набор хромосом и генов, какой имела зигота55.
  Генетический материал всех живых существ состоит из ДНК - молекулярного волокна длиной до нескольких сантиметров, состоящего из нуклеотид, отличающихся друг от друга наличием одного из четырёх оснований: аденина А, цитозина С, гуанина G, и тимина Т. Эти нуклеотиды обладают фундаментальным свойством комплементарности. Так основанию А соответствует основание Т, а основанию С - основание G. Стабильная форма ДНК представляет собой спираль из двух комплементарных цепей. Свойство комплементарности играет главную роль в репликации генетического материала, а также в экспрессии генов.
  У человека геном образуют примерно 3·109 (три млрд.) нуклеотид, составляющих 23 различные нити ДНК, сжатые в компактные образования окружающими их белками и образующие 23 хромосомы. В зависимости от размеров каждая хромосома содержит текст, состоящий из 100-300 млн. "букв" А, С, G, Т. В каждой клетке нашего тела содержатся два почти идентичных экземпляра каждой хромосомы (диплоидное состояние): одна хромосома представляет собой копию отцовской хромосомы, другая - материнской. И только в половых клетках (гаметах) находится по одной копии каждой хромосомы (гаплоидное состояние).

<< Пред.           стр. 6 (из 15)           След. >>

Список литературы по разделу