<< Пред.           стр. 3 (из 5)           След. >>

Список литературы по разделу

  Кора состоит из серого и белого вещества, а также нейроглии. Количество нейронов 16-18 млрд. Глиальные клетки выполняют трофическую функцию.
  По функциональному признаку нейроны коры делятся на 3 вида: афферентные (сенсорные) - к ним подходят нервные волокна афферентных путей, ассоциативные (вставочные) - в пределах головного и спинного мозга, эфферентные (двигательные) - образует нисходящие (эфферентные) проводящие пути, идущие от коры к разным ядрам головного и спинного мозга. К сенсорным клеткам относятся звездчатые клетки, входящие в 3 и 4 слоя сенсорных областей коры. К эфферентным нейронам относятся нейроны 5 слоя моторной зоны, которые представлены гигантскими пирамидными клетками Беца. К ассоциативным клеткам относятся веретенообразные и пирамидные клетки 3 слоя.
  В связи с тем, что тела и отростки описанных выше нейронов имеют упорядоченное расположение, кора построена по экранному принципу, т.е. сигнал фокусируется не точка в точку, а на множество нейронов, что обеспечивает полный анализ раздражителя, а также возможность передачи сигнала в другие зоны коры, которые заинтересованы в нем.
  Кора состоит из 7 слоев.
 1. Молекулярный слой - мелкие нейроны и волокна. Сюда приходят афферентные таламокортикальные волокна от неспецифических ядер таламуса, регулирующие уровень возбудимости корковых нейронов.
 2. Наружный зернистый слой образован мелкими нейронами в форме зерен и мелкими пирамидными клетками.
 3. Наружный пирамидный слой состоит из пирамидных клеток разной величины. Функционально II и III слои коры объединяют нейроны, отростки которых обеспечивают кортико-кортикальные ассоциативные связи.
 4. Внутренний зернистый слой образован звездчатыми клетками. Здесь оканчиваются афферентные таламокортикальные волокна, идущие от проекционных ядер таламуса.
 5. Внутренний пирамидный слой включает крупные пирамидальные клетки - клетки Беца, аксоны которых идут в головной и спинной мозг.
 6. Полиморфный слой ( мультиформный) - многоформенные нейроны, имеющие треугольную и веретенообразную форму.
 7. Веретенообразные нейроны связывают все слои коры, их волокна поднимаются до 1 слоя. Имеются только в некоторых областях коры.
  Функциональной единицей коры является вертикальная колонка, состоящая из 7 клеток, они вместе реагируют на один и тот же раздражитель.
  В коре выделяют сенсорные, ассоциативные и двигательные зоны, исходя из расположения нейронов:
  Сенсорные зоны - это входные участки коры, которые через восходящие нервные пути получают сенсорную информацию от большинства рецепторов тела.
  Ассоциативные зоны - 1) связывают вновь поступающую сенсорную информацию с полученной ранее и хранящейся в блоках памяти, благодаря чему новые стимулы "узнаются", 2) информация от одних рецепторов сопоставляются с сенсорной информацией от других рецепторов, 3) участвуют в процессах запоминания, научения и мышления.
  Двигательные зоны - выходные области коры. В них возникают двигательные импульсы, идущие к произвольным мышцам по нисходящим путям, которые находятся в белом веществе больших полушарий.
  Цитоархитектоника - это расположение нейронов в коре.
  Миелоархитектоника - это распределение волокон в коре головного мозга.
  Начало разнокачественного строения коры больших полушарий было положено в 1674 г. киевским анатомом А.А. Бецом. Позже К. Бродман в 1903-09 гг. выделил 52 цитоархитектонических полей. О. Фогт и Ц. Фогт выделили в коре 150 миелоархитектонических полей.
  Локализация функций в коре больших полушарий.
  И.П. Павлов рассматривал кору больших полушарий как сплошную воспринимательную поверхность, как совокупность корковых концов анализаторов. Анализатор - сложная система, которая состоит из рецептора - воспринимающего аппарата, проводников нервных импульсов и мозгового конца, где происходит высший анализ раздражений. И.П. Павлов показал, что в коре различают ядра и рассеянные элементы. Ядро - это место концентрации нейронов, где проецируются все структуры периферического рецептора и происходит важный анализ и синтез и интеграция функций.
  Рассеянные элементы могут располагаться по периферии ядра и на различном расстоянии от него. В них происходит более простой анализ и синтез.
  Корковые концы анализатора осуществляют анализ и синтез сигналов.
  Рассмотрим некоторую локализацию ядер моторных анализаторов:
  1. В коре постцентральной извилины (поля 1, 2, 3) и верхней теменной дольки (поля 5 и 7) залегают нервные клетки, образующие ядро коркового анализатора общей чувствительности (температурной, болевой, осязательной и проприоцептивной). Проводящие чувствительные пути, следующие в кору большого мозга, перекрещиваются либо на уровне различных сегментов спинного мозга (пути болевой, температурной чувствительности, осязания и давления), либо на уровне продолговатого мозга (пути проприоцептивной чувствительности коркового направления). Вследствие этого постцентральные извилины каждого из полушарий связаны с противоположной половиной тела. В постцентральной извилине рецепторные поля различных участков тела человека спроецированы таким образом, что наиболее высоко расположены корковые концы анализатора чувствительности нижних отделов туловища и нижних конечностей, а наиболее низко (ближе к латеральной борозде) проецируются рецепторные поля верхних участков тела, головы и верхних конечностей.
  2. Ядро двигательного анализатора находится в основном в так называемой двигательной области коры, к которой относятся процентральная извилина (поля 4 и 6) и парацентральная долька на медиальной поверхности полушария. В 5 слое коры предцентральной извилины залегают пирамидные нейроны (клетки Беца), которые И.П. Павлов относил к вставочным, и отмечал, что эти клетки своими отростками связаны с подкорковыми ядрами, двигательными клетками ядер черепных и спинномозговых нервов. Причем в верхних участках предцентральной извилины и в парацентральной дольке расположены клетки, импульсы от которых направляются к мышцам самых нижних отделов туловища и нижних конечностей. В нижней части предцентральной извилины находятся также двигательные центры, регулирующие деятельность мышц лица.
  Таким образом, все участки тела человека спроецированы в предцентральной извилине "вверх ногами". В связи с тем, что пирамидные пути, берущие начало от гигантопирамидных клеток, перекрещиваются либо на уровне мозгового ствола (корково-ядерные волокна) на границе со спинным мозгом, либо в сегментах спинного мозга (корково-спинномозговой путь), двигательные области каждого из полушарий связаны со скелетными мышцами противоположной стороны тела. Если мышцы конечностей изолированно связаны с одним из полушарий, мышцы туловища, гортани и глотки имеют связь с двигательными областями обоих полушарий.
  3. Ядро зрительного анализатора располагается в затылочной доле полушария большого мозга (поля 17, 18, 19). Ядро зрительного анализатора правого полушария связано проводящими путями с латеральной половиной сетчатки правого глаза и медиальной половиной сетчатки левого глаза. В коре затылочной доли левого полушария проецируюся соответственно рецепторы латеральной половины сетчатки левого глаза и медиальной половины сетчатки правого глаза. Только двустороннее поражение ядер зрительного анализатора приводит к полной корковой слепоте. Поражение поля 18, находящегося несколько выше поля 17, сопровождается потерей зрительной памяти, однако утраты зрения не отмечается. Наиболее высоко по отношению к двум предыдущим в коре затылочной доли находится поле 19, поражение которого сопровождается утратой способности ориентироваться в незнакомой окружающей обстановке.
  4. В глубине латеральной борозды на обращенной к островку поверхности средней части верхней височной извилины находится ядро слухового анализатора (поля 41, 42, 52). К нервным клеткам, составляющим ядро слухового анализатора каждого из полушарий, проходят проводящие пути от рецепторов как левой, так и правой стороны. В связи с этим одностороннее поражение этого ядра не вызывает полной утраты способности воспринимать звуки. Двустороннее поражение сопровождается корковой глухотой, как и в случае полной корковой слепоты.
  5. Ядро двигательного анализатора артикуляции речи (речедвигательный анализатор) располагается в задних отделах нижней лобной извилины (поле 44). Он граничит с теми отделами предцентральной извилины, которые являются анализаторами движений, производимых при сокращении мышц головы и шеи. Это и понятно, так как в речедвигательном анализаторе осуществляется анализ движений всех мышц (губ, шеи, языка, гортани), принимающих участие в акте формирования устной речи. Повреждение участка коры этой области (поле 44) приводит к двигательной афазии, т.е. утрате способности к сокращению мышц, участвующих в речеобразовании. Более того, при повреждении поля 44 не утрачивается способность к произношению звуков или пению.
  В центральных отделах нижней лобной извилины (поле 45) находится ядро речевого анализатора, связанного с пением. Поражение поля 45 сопровождается вокальной амузией - неспособностью к составлению и воспроизведению музыкальных фраз, и аграмматизмом, когда утрачивается способность к составлению осмысленных предложений из отдельных слов. Речь таких людей состоит из не связанного по смысловому значению набора слов.
  6. Ядро слухового анализатора устной речи тесно взаимосвязано с корковым центром слухового анализатора и располагается, как и последний, в области верхней височной извилины. Это ядро находится в задних отделах верхней височной извилины, на ее поверхности, обращенной в сторону латеральной борозды полушария большого мозга (поле 42).
  Поражение ядра не нарушает слухового восприятия звуков, однако утрачивается способность понимать слова, речь. Функция этого ядра состоит в том, что человек не слышит и не понимает речь другого человека, но контролирует свою собственную.
  В средней трети верхней височной извилины (поле 22) находится ядро коркового анализатора, поражение которого сопровождается наступлением музыкальной глухоты, когда музыкальные фразы воспринимаются как бессмысленный набор различных шумов. Этот корковый конец слухового анализатора относится к центрам второй сигнальной системы, воспринимающим словесное обозначение предметов, действий, явлений, т.е. воспринимающих сигналы сигналов.
  7. В непосредственной связи с ядром зрительного анализатора находится ядро зрительного анализатора письменной речи (поле 39), расположенное в угловой извилине нижней теменной дольки. Поражение этого ядра приводит к утрате способности воспринимать написанный текст, читать.
  Различают в коре 3 группы полей: первичные, вторичные и третичные.
  Первичное поле связано с органами чувств и органами движения, оно раньше формируется в онтогенезе и имеет наиболее крупные клетки. Это так называемые ядерные зоны анализаторов. Они осуществляют анализ раздражений, поступающих в кору от соответствующих рецепторов. Если разрушить ядерную зону, наступит корковая слепота, глухота, двигательный паралич.
  Вторичные поля (периферические зоны анализаторов) связаны с отдельными органами только через первичные поля. Они служат для обобщения и дальнейшей обработки поступающей информации. Если разрушить это поле, человек видит, слышит, но не понимает смысла.
  Третичные поля (зоны перекрытия анализаторов) занимают почти половину территории коры и имеют обширные связи с другими отделами коры и неспецифическими системами мозга. Здесь в основном располагаются мелкие и разнообразные (звездчатые) клетки и происходит высший анализ и синтез информации, в результате чего вырабатываются цели и задачи поведения. Согласно им происходит программирование двигательной деятельности. При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью и даже простыми двигательными навыками.
  Первичные и вторичные поля есть у человека и животных, а третичное поле только у человека. Третичные поля созревают у человека позже других корковых полей. Для развития полей необходимо, чтобы больше информации поступало от зрительных, слуховых, мышечных рецепторов.
  Онто- и филогенез коры.
  К 30-тидням внутриутробного развития формируется кора. К 7-12-му месяцам постнатального развития происходит созревание мозговых систем.
  У новорожденного развиты филогенетически старые отделы мозга: мозжечок, мост, а также промежуточный мозг. У новорожденных основные борозды и извилины (центральная, латеральная) выражены хорошо, а ветви борозд и извилин слабо. Миелинизация афферентных волокон начинается в 2 месяца и заканчивается к 4-5 годам, а эфферентные волокна несколько позже - от 4-5 месяцев до 7-8 лет. Соотношения борозд, извилин и швов, характерные для взрослого человека, устанавливаются у детей в 6-8 лет.
 
 11. АСИММЕТРИЯ ПОЛУШАРИЙ БОЛЬШОГО МОЗГА.
 
  Передний мозг, представляющий самый массивный отдел головного мозга, разделен по средней линии глубокой вертикальной щелью на правое и левое полушария. Оба они соединены между собой с помощью мозолистого тела. В каждом полушарии выделяют доли: лобную, теменную, височную, затылочную и островок. Каждая доля мозга имеет функциональное значение. Левое и правое полушария выполняют разную функцию, но совместно обеспечивают целенаправленное поведение.
  Учение о межполушарной асимметрии возникло более 100 лет назад. В 1860-х годах французский исследователь П. Брока установил, что повреждение определенного участка коры вызывает афазию или расстройство речи. Этот участок находится у края лобной доли левого полушария, назван зоной Брока (зона 1). Она контролирует осуществление речевых реакций.
  В 1874 г. немецкий исследователь К. Вернике обнаружил в левом полушарии сенсорный (зона 2) центр речи, поражение которого ведет к расстройству понимания речи. Центр Вернике расположен в височной доле. У человека с пораженным центром речь беглая, бессмысленная, а сам больной не замечает этого дефекта.
  После рассечения комиссурных связей двух полушарий каждое из них функционирует самостоятельно, получая информацию только справа или слева. Если больному с расщепленным мозгом предъявить в правую половину зрительного поля какой-либо предмет, то он может его назвать и взять правой рукой; то же самое со словом, т.е. используется левое полушарие. В данном случае он не отличается от нормального человека. Дефект проявляется, когда стимулы возникают на левой стороне тела или в левой половине зрительного поля. Предмет, изображение которого проецируется в правое полушарие, больной назвать не может. Хотя он правильно выбирает его среди других. Т.е. правое полушарие не может обеспечить функцию называния предмета, но оно узнает предмет.
  3 зона - моторная, расположена в передней центральной извилине правого и левого полушария. Это зона управляет мышцами лица, конечностей и туловища.
  Правое полушарие контролирует и регулирует сенсомоторные и двигательные функции левой половины тела, а левое полушарие - правой половины тела. С правым полушарием связаны музыкальные способности. Левое полушарие - речевое, обрабатывает информацию аналитически и последовательно, правое - одновременно и целостно. Человек с превалированием левополушарной функции тяготеет к теории, имеет большой словарный запас, ему присущи двигательная активность, целенаправленность. Правополушарный человек тяготеет к конкретным видам деятельности, медлителен, неразговорчив, но тонко чувствует и переживает.
  Асимметрия функций больших полушарий является генетически предопределенной. Она выражается в преимущественном участии левой и правой половины мозга в качественно различном анализе внешних раздражителей.
  Функциональная асимметрия может усиливаться при направленном вмешательстве за счет формирования устойчивой доминантной установки, но переучивания генетически запрограммированных асимметрических форм движений.
  Исследование функциональной асимметрии мозга у детей показало, что первоначально обработка речевых сигналов осуществляется обоими полушариями, и доминантность левого полушария формируется позже. Если у ребенка, научившегося говорить, возникает поражение речевой области левого полушария, то у него развивается афазия, и через год речь восстанавливается. И тогда центр речи перемещается в зону правого полушария. Такая передача речевой функции от левого полушария правому возможна лишь до 10 лет.
  Специализация правого полушария в функции ориентации в пространстве возникает также не сразу: у мальчиков в возрасте от 6 лет, а у девочек - после 13 лет.
  Д. Кимура полагает, что в эволюционном плане именно развитие руки как органа языка жестов, ее манипулятивных способностей и привело к развитию левого полушария. Позже данная функция у руки была передана голосовой мускулатуре.
  Левое полушарие превосходит правое также и в способности понимать речь, хотя эти различия менее выражены. Согласно моторной теории восприятия главным компонентом распознавания речевых звуков являются кинестезические сигналы, возникающие от мышц речевого аппарата при восприятии речевых сигналов. В этом особая роль принадлежит моторным системам левого полушария.
  Речевые функции у правшей преимущественно локализованы в левом полушарии. И лишь у 5% лиц речевые центры - в правом полушарии. У 70% леворуких центр речи, также как и у праворуких - в левом полушарии. У 15% леворуких центр речи находится в правом полушарии.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Рис. 7. Проекция человека в центральных извилинах.
  Функциональная асимметрия обнаружена не у всех людей, примерно у одной трети она не выражена, т.е. полушарии не имеют четкой функциональной специализации.
  Выделяют несколько видов функциональных асимметрий:
  1. Моторная асимметрия - неодинаковость двигательной активности рук, ног, лица, половин тела, управляемая каждым полушарием мозга.
  2. Сенсорная асимметрия - неравнозначность восприятия каждым из полушарий объектов, расположенных слева и справа от средней плоскости тела.
  3. Психическая асимметрия - специализация полушарий мозга в отношении различных форм психической деятельности.
  Соотношение активности двух полушарий может быть различным. На этом основании И.П. Павловым были выделены специфические человеческие типы внешней нервной деятельности (ВНД): художественный, мыслительный и средний.
  Художественный тип людей характеризуется преобладанием активности первой сигнальной системы над второй. У них преобладает "правополушарное" образное мышление. У человека мыслительного типа преобладает вторая сигнальная система над первой, т.е. доминирует "левополушарное" абстрактное мышление.
  4. При рассечении мозолистого тела происходит раздвоение личности. Выстраиваются две модели поведения на одну и ту же ситуацию. В процессе эволюции у человека происходит разделение функций правого и левого полушарий. Морфологически полушария принципиально не отличаются. Правое лишь на 5 г. больше левого, но в левом полушарии больше серого вещества. Левое полушарие отвечает за речь, письмо, чтение, счет, сознательное абстрактное мышление. Правое - узнавание предметов, цвет, форму, различение голосов.
  Сознание человека базируется на совместной деятельности двух полушарий, хотя одно из них является доминантным. Левое полушарие принимает переработанную информацию, аналитическую и последовательную с привлечением фактов, логики. Правое полушарие перерабатывает информацию одновременно и целостно, не рассматривая при этом отдельные части, элементы, входящие в состав предмета или явления. Правое полушарие следит за всеми изменениями окружающей среды, за изменением настроения, а левое анализирует эти изменения, оно ответственно за выбор цели, которую мы ставим перед собой на будущее. В правом полушарии объединяется вся информация, приходящая из соматосенсорной зоны, сообщающая относительное положение тела в пространстве. Она соединяется с информацией, поступающей из зрительных и слуховых зон коры, благодаря чему мы имеем точное представление о собственном теле во время его передвижения в пространстве. В левом полушарии данная информация соединяется с памятью, что позволяет осмысленно интерпретировать зрительные, слуховые и тактильные ощущения (сообщение от рецепторов кожи, мышц, суставов) и вырабатывать определенную линию поведения.
  В левом полушарии находятся два центра: центр Брока и центр Вернике. Центр Брока располагается в лобной доле левого полушария. Он прилегает к двигательной зоне коры. Это - моторный центр речи, управляющий мышцами языка, челюстей и глотки, благодаря чему произносятся звуки. Если этот центр поврежден, возникает афазия, затрудняются и двигательные акты. После инсультов этот центр парализуется, при этом понимание речи, чтение и письмо не нарушаются, и больной осознает свой дефект.
  Центр Вернике расположен в верхнезаднем участке левой височной доли. Это - сенсорный центр речи, который отвечает за понимание речи, ее осмысливание. Именно в этой зоне расположен основной нервный субстрат, который определяет построение устной речи, ее форму, смысл и содержание. При ее повреждении возникает афазия Вернике, когда понимание речи сильно затруднено, речь беглая, бессмысленная, чтение, письмо нарушены, и больной не осознает бессмысленность своей речи.
  Центр Брока и центр Вернике соединены между собой нервными волокнами, образуя дугообразный пучок. Вначале в зоне Брока под влиянием приходящих импульсов строится детальная и координированная программа локализации - как и в какой последовательности должны действовать мышцы губ, язычка и глотки. Отсюда импульсы поступают в моторную зону коры, которая управляет деятельностью всех мышц. Из моторной зоны импульсы поступают к соответствующим мышцам. Звучание слова улавливается слуховой зоной коры, но чтобы понять смысл, необходимо, чтобы сигналы обязательно прошли через зону Вернике, которая прилегает к слуховой зоне височной области. Здесь звуки истолковываются как речь. Если же слово воспринимается не через звук, а глазами (при чтении), то в этом случае информация из первичной зрительной коры также должна поступать в центр Вернике. Поскольку устная речь возникает в процессе эволюции раньше, чем письменная, дети начинают говорить и понимать речь раньше, чем научатся читать и писать.
  Дислексия - нарушение у детей способности к чтению. Это может быть результатом перенесенных травм, особенно до 1-го года жизни, и как результат нарушения зрительно-пространственного восприятия. Они не могут воспринимать слова как целое. Они не могут отличать схожие слова, теряются, если их просят произнести незнакомое слово. Чаще всего у таких детей нестабильность глазодоминанты. У большинства людей один глаз, так же как и рука, является господствующим. Нестабильность глазодоминантности может привести к нарушению движения глаз и тогда человеку очень трудно следить за порядком расположения букв и слов на странице.
  Глазодоминантная нестабильность может быть следствием нестабильности контроля со стороны полушарий головного мозга, когда ни одно из них не берет на себя доминантную роль контроля за движением глаз.
  Девочки начинают говорить и читать раньше мальчиков. У мужчин поражение левого полушария вызывает афазию в 3 раза чаще, чем у женщин, и приводит к существенному ухудшению вербальной способности. У женщин специализация полушарий выражена в меньшей степени. Это закладывается в пренатальном (дородовом) периоде. Уже на 3-ем месяце внутриутробного развития у плода мужского пола значительно возрастает концентрация мужского полового гормона тестостерона. У женского плода он образуется в меньших концентрациях, поскольку поступает из организма матери. Тестостерон влияет на скорость развития полушарий, как бы замедляя рост левого полушария и способствуя быстрому развитию правого полушария, ответственного за пространственную способность.
  Патологические изменения I и II сигнальной системы.
  У человека в отличие от животных могут быть специфические формы проявления неврозов, и это зависит от того, какая сигнальная система вовлечена в патологический процесс.
 1. Истерия - преобладает I сигнальная система. Вокруг всё раздражает, наблюдается повышенная чувствительность к внешней обстановке, к раздражителям, которые являются для всех окружающих подпороговыми, а для больного - пороговым или же сверхпороговым, когда формируется сильный процесс возбуждения, доходящий до истерики. В результате может произойти перенапряжение силы возбуждения. Все это отрицательно влияет на умственную и физическую работоспособность, на все виды внутреннего торможения.
 2. Психостения - преобладает II сигнальная система. Люди разочарованы в жизни, бедны в эмоциях, склоны к пустому мудрствованию. Их замыслы бесплодны, нереальны, оторваны от жизни.
 3. Невростения - в нервный процесс в равной степени вовлечены I и II сигнальные системы. В этом случае для человека характерны вялость, слабость, депрессия, от которых он не может избавиться.
  Условия устранения неврозов и восстановление работоспособности корковых клеток:
 - устранение факторов, вызывающих невроз;
 - тренировка процессов возбуждения и торможения;
 - прием лекарственных препаратов;
 - сон и отдых. Соматические клетки восстанавливаются через 6 часов, нервные - через 11 часов. Учитель должен учитывать типологические особенности ВНД, на основе которого и должен определяться индивидуальный подход к процессу воспитания и обучения. Все это позволит устранить перенапряжение нервных процессов и правильно определить объем и характер работы, особенно для холериков и меланхоликов.
 
 12. ПРОВОДЯЩИЕ ПУТИ ГОЛОВНОГО И СПИННОГО МОЗГА.
 
  В нервной системе импульсы, возникающие при воздействии на рецепторы, передаются по отросткам с нейрона на нейрон. Это осуществляется благодаря синапсам, которые выполняют функцию смыкателя или размыкателя нейронов. Импульсы передаются только в одном направлении - от рецептора через вставочный нейрон к эфференту, что обусловлено морфофункциональными особенностями синапсов, которые проводят возбуждение только от пресинаптической мембраны к постсинаптической.
  Проводящие пути - это совокупность нервных волокон, проходящих в определенных зонах белого вещества головного и спинного мозга, объединенных общностью морфологического строения и функции.
  В спинном и головном мозге выделяют по строению и функции три группы проводящих путей.
  Ассоциативные пути соединяют участки серого вещества, различные функциональные центры (кора мозга, ядра) в пределах одной половины мозга. Выделяют короткие и длинные ассоциативные волокна. Короткие волокна соединяют близлежащие участки серого вещества и располагаются в пределах одной доли мозга - внутридолевые пучки волокон.
  Длинные ассоциативные волокна связывают участки серого вещества, расположенные на значительном расстоянии друг от друга, обычно в различных зонах. К ним относятся верхний продолговатый пучок, соединяющий кору лобной доли с теменной и затылочной, нижний продолговатый пучок, связывающий серое вещество височной доли с затылочной долей. В спинном мозге ассоциативные волокна связывают между собой нейроны, расположенные в различных сегментах. Они образуют собственные пучки спинного мозга (межсегментарные пучки), которые располагаются вблизи серого вещества. Короткие пучки перекидываются через 2-3 сегмента, а длинные пучки соединяют далеко расположенные сегменты спинного мозга.
  Коммисуральные (спаечные (нервные волокна связывают нервные центры (серое вещество) правого и левого полушария большого мозга, образуют мозолистое тело (коммисуру), спайку свода и переднюю спайку, т.е. коммисуральные волокна проходят из одного полушария в другое. В мозолистом теле располагаются волокна, соединяющие новые, более молодые отделы мозга. В белом веществе полушарий волокна мозолистого тела расходятся веерообразно, образуя лучистость мозолистого тела.
  Проекционные волокна соединяют нижележащие отделы с базальными ядрами и корой, и, наоборот, кору головного мозга, базальные ядра с ядрами мозгового ствола и со спинным мозгом. При помощи проекционных нервных волокон, достигающих кору большого мозга, картины внешнего мира как бы проецируются на кору, как на экран, где происходит высший анализ поступивших импульсов и сознательная их оценка.
  Выделяют проекционные восходящие и нисходящие пути. Восходящие (афферентные, чувствительные) несут импульсы, идущие от органов чувств, опорно-двигательного аппарата, внутренних органов и сосудов в головной мозг, к его подкорковым и высшим центрам. По характеру проводимых импульсов восходящие проекционные пути делят на 3 группы:
  1) экстерорецептивные пути - импульсы поступают от органов чувств (зрения, слуха, вкуса, обоняния), кожных покровов (болевые, температурные, осязания, давления);
  2) проприорецептивные пути - импульсы поступают от органов движения, несут информацию о положении частей тела, о размахе движений;
  3) интерорецептивные пути - импульсы поступают от внутренних органов, сосудов (хемо-, баро-, механорецепторы).
  Экстерорецептивные проводящие пути. Проводящие пути болевой и температурной чувствительности образуют латеральный (боковой) спинно-таламический путь.
  Все восходящие пути состоят из 3 нейронов:
  I нейроны располагаются в органах чувств и заканчиваются в спинном мозге или в стволовой части мозга.
  II нейроны располагаются в ядрах спинного или головного мозга и заканчиваются в ядрах таламуса, гипоталамуса. Эти нейроны образуют центростремительные восходящие пути.
  III нейроны лежат в ядрах промежуточного мозга, для кожной и мышечно-суставной чувствительности - в ядрах таламуса, для зрительных импульсов - в коленчатом теле, для обонятельных импульсов - в сосцевидных телах. Отростки нейронов заканчиваются на клетках соответствующих корковых центров (зрительной, слуховой, обонятельной и общей чувствительности).
  Рецепторы первого (чувствительного) нейрона, воспринимающего раздражения, располагаются в коже и на слизистой оболочке, а его тело лежит в спинномозговых узлах; центральный же отросток идет в составе заднего корешка в задний рог спинного мозга. Аксон второго нейрона, тело которого лежит в заднем роге, направляется на противоположную сторону спинного мозга. Через его переднюю серую спайку аксон входит в боковой канатик, где включается в состав латерального спинно-таламического пути, который поднимается до продолговатого мозга. Пучок располагается позади оливы, проходит в покрышку моста и покрышку среднего мозга. Аксоны заканчиваются, образуя синапсы на клетках, расположенных в таламусе (III нейрон). Аксоны III нейрона достигают коры полушария, его постцентральной извилины (IV слой коры), где находится корковый конец общей чувствительности. Импульсы от кожных рецепторов (рецепторы, воспринимающие чувство давления и осязания) поступают к клеткам коры в постцентральную извилину - место общей чувствительности.
  Проприорецептивные проводящие пути.
  Рецепторы I нейрона располагаются в мышцах, сухожилиях, связках, суставных капсулах. Тело I нейрона - в спинномозговом узле, их аксоны в составе заднего корешка, не входя в задний рог, направляются в задний канатик, а затем уходят в продолговатый мозг к тонкому и клиновидному ядрам, где заканчиваются синапсами на телах II нейронов. Аксоны II нейронов, выходящие из этих ядер, переходят на противоположную сторону, образуя медиальную петлю, проходят через покрышку моста и покрышку среднего мозга и заканчиваются в таламусе на телах третьих нейронов. Аксоны III нейронов направляются в кору постцентральной извилины, где заканчиваются в IVслое коры.
  Другая часть волокон III нейронов на выходе из тонкого и клиновидного ядер направляется в нижнюю мозжечковую ножку и заканчивается в коре червя. Третья часть волокон переходит на противоположную сторону, направляется через нижнюю мозжечковую ножку к коре червя противоположной стороны.
  Интерорецептивные проводящие пути.
  В кору большого мозга поступают импульсы по прямым восходящим путям и из подкорковых центров. Кора (при участии сознания) управляет двигательными функциями организма непосредственно через пирамидные пути (произвольные движения). Пирамидным путь называется потому, что свое начало он берет от больших пирамидных клеток коры. Нисходящий пирамидный путь является эфферентным.
  Пирамидные пути имеют двухнейронное строение. Первые нейроны - это большие пирамидные клетки, расположенные в двигательной зоне коры. Вторые нейроны входят в состав двигательных ядер черепных нервов в стволе головного мозга и двигательных ядер передних рогов спинного мозга. Они называются периферическими мотонейронами.
  К пирамидным путям относятся главный двигательный (пирамидный), корково-ядерный, латеральный и передний корково-спинно-мозговой экстропирамидные пути.
  Главный двигательный путь начинается от клеток V слоя коры предцентральной извилины, где расположено тело первого нейрона. Центральные отростки этих нейронов идут к двигательным ядрам черепных нервов и передним рогам спинного мозга, а от них к скелетным мышцам. В зависимости от направления и расположения волокон пирамидный путь делится на 3 части: корково-ядерный путь, идущий к ядрам черепных нервов, латеральный и передний корково-спинно-мозговой, идущие к ядрам передних рогов спинного мозга.
  Корково-ядерный путь начинается от клеток, залегающих в нижней трети предцентральной извилины. Волокна этого пути переходят на противоположную сторону, к двигательным ядрам черепных нервов: III и IV пар - в среднем мозге, V, VI, VII - в мосту, IХ, Х, ХI, ХII - в продолговатом мозге, где заканчиваются синапсами на их нейронах. Аксоны двигательных нейронов указанных ядер выходят из мозга в составе соответствующих черепных нервов и направляются к скелетным мышцам человека.
  Экстропирамидные проводящие пути осуществляют связь со стволом мозга и с корой больших полушарий. Кора контролирует и управляет экстропирамидной системой и является началом экстропирамидных путей, а заканчиваются они в двигательных ядрах мозгового ствола и передних рогах спинного мозга. Кора оказывает свое влияние через мозжечок, красные ядра, ретикулярную формацию, вестибулярные ядра.
  В состав кортико-мосто-мозжечкового пути входят 2 нейрона. Тело клетки первого нейрона лежит в коре лобной, височной, теменной и затылочной долей. Их отростки образует корково-мостовые волокна. Они направляются к внутренней капсуле и проходят через нее. Аксоны вторых нейронов заканчиваются синапсами на клетках соответствующих ядер моста своей стороны. Эти же волокна образуют пучки поперечных волокон моста, переходящие на противоположную сторону, и через среднюю мозжечковую ножку направляются в полушарие мозжечка противоположной стороны. Мозжечок связан с красным ядром и вестибулярным аппаратом.
  Таким образом, проводящие пути головного и спинного мозга объединяют организм в одно целое, обеспечивают согласованность его действий.
 
 13. ВЕГЕТАТИВНАЯ (АВТОНОМНАЯ) НЕРВНАЯ СИСТЕМА.
 
  Вегетативная нервная система (ВНС) является частью нервной системы, обеспечивая иннервацию внутренних органов и железистых эпителий.
  Особенностями вегетативной нервной системы являются:
  1. Непроизвольность.
 2. Импульс передается через два следующих друг за другом нейрона:
  а) 1-й нейрон лежит в ЦНС;
  б) 2-й нейрон лежит в ганглии.
 3. Скорость проведения нервного импульса меньше, чем в соматической нервной системе.
 4. ВНС обладает способностью к регенерации.
  Вегетативные нервные волокна образуют нервные стволы или следуют в составе черепных и спинномозговых нервов. Они делятся на предузловые (предганглионарные) и послеузловые (постганглионарные). Предузловые покрыты миелиновой оболочкой и выходят из головного и спинного мозга в составе корешков соответствующих черепных и спинномозговых нервов. Послеузловые волокна не имеют миелиновой оболочки, и нервный импульс передают к тканям, железам и гладкой мускулатуре.
  Вегетативная нервная система делится на парасимпатическую и симпатическую.
  Парасимпатическая нервная система представлена двумя отделами: центральным и периферическим.
  Центральный отдел образован парасимпатическими ядрами глазодвигательного (средний мозг), лицевого (мост), языкоглоточного и блуждающего (продолговатый мост) черепных нервов, а также крестцовыми парасимпатическими ядрами, расположенными в II, III и IV крестцовых сегментах спинного мозга.
  Периферический отдел представлен ядрами и волокнами, входящими в состав III, VII, IX и X пар черепных и тазовых нервов.
  Парасимпатическая нервная система содержит 2 нейрона:
  1) первый лежит в продолговатом мозге или в крестцовой части спинного мозга;
  2) второй, мотонейрон - в черепных и крестцовых частях.
  Парасимпатические нервные окончания выделяют ацетилхолин (АХ). Самое большое количество парасимпатических волокон проходит в составе блуждающего нерва. Они берут начало от заднего ядра блуждающего нерва, расположенного в продолговатом мозге на дне IV желудка. Он содержит большое скопление нервных клеток, на которых происходит переключение предганглионарных волокон на постганглионарные. Вместе с этим парасимпатические нервные волокна, идущие в составе блуждающего нерва, также достигают органов и заканчиваются в интрамуральных узлах, т.е. в узлах, расположенных в стенках органов.
  Симпатическая нервная система состоит из центрального и периферического отделов. Центральный отдел представлен вегетативным ядром, лежащим в боковых промежуточных столбах от VIII шейного до II поясничного сегментов, а периферический - симпатическим столбом, расположенным по бокам на протяжении I шейного позвонка до копчика. Симпатические волокна прерываются в околопозвоночных узлах симпатического ствола и в предпозвоночных узлах. Их нейроны находятся на некотором расстоянии от позвоночника, например, в узлах солнечного сплетения.
  Топографически симпатический ствол делится на четыре раздела: шейный, грудной, поясничный и крестцовый. Узлы симпатического ствола, за исключением шейного отдела связаны белыми соединительными ветвями со спинномозговыми нервами. По этим ветвям предганглионарные волокна достигают узлов симпатического ствола. От нервных клеток узлов симпатического ствола отходят постганглионарные волокна, которые идут к иннервируемым органам трояким путем: в составе спинномозговых нервов, в которые они попадают по серым соединительным ветвям, по ходу кровеносных сосудов или в виде обособленности нервов, отходящих от симпатического ствола.
  Шейный отдел представлен 3 узлами: верхним, средним и нижним.
  Часть нижнего шейного узла сливается с 1-м грудным, образуя шейно-грудной (звездчатый) узел. От верхнего шейного узла отходят ветви, осуществляющие синаптическую иннервацию органов, кожи, сосудов головы и шеи. От среднего шейного узла отходит ветвь к сердцу.
  Грудной отдел представлен цепью из 10-12 узлов. От них отходит большое количество веточек, образующих сплетение в толще плевры, на кровеносных сосудах, а также принимающих участие в формировании пищеварительного, легочного, сердечного, аортального и других ветвей.
  От грудного симпатического узла отходят два крупных нерва - большой и малый внутренностные нервы, участвующие в иннервации органов брюшной полости. Они направляются в чревное (солнечное) сплетение, расположенное на уровне первого поясничного позвонка одноименной артерии.
  Чревное сплетение является самым крупным симпатическим сплетением. Ветви его иннервируют кровеносные сосуды брюшной полости, желудок, кишечник, печень, поджелудочную железу, селезенку, надпочечники.
  Поясничный отдел состоит из 3-5 узлов. От каждого из них идут аортальные ветви, образующие аортальное сплетение, которое участвует в иннервации органов брюшной полости и сосудов.
  Крестцовый отдел состоит из 4 узлов, расположенных на тазовой поверхности крестца. Правый и левый симпатические стволы сближаются и образуют непостоянный непарный копчиковый узел. От узлов крестцового отдела симпатического ствола отходят висцеральные ветви, принимающие участие в образовании сплетений таза, обеспечивающих симпатическую иннервацию сосудов, желез, органов данной области.
 
 14. ОБЩИЕ ПРИНЦИПЫ РАЗВИТИЯ
 И СТРОЕНИЯ СЕНСОРНЫХ СИСТЕМ.
 
 Общие закономерности функций анализаторов.
  Представления об анализаторных системах развиты и экспериментально обоснованы И.П. Павловым. Каждый анализатор есть определенная анатомическая локализованная структура - от периферических рецепторных образований до проекционных зон коры головного мозга. Анализаторы выполняют функцию приема и переработки сигналов внешней и внутренней среды организма.
  Сенсорной системой (анализатором по И.П. Павлову) называют часть нервной системы, состоящую из воспринимающих элементов - рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию.
  Рецептор - периферическая специализированная часть анализатора, посредством которой воздействие раздражителей внешнего мира и внутренней среды организма трансформируется в процесс нервного возбуждения.
  Сенсорная система вводит информацию в мозг и анализирует ее.
  Работа любой сенсорной системы начинается с восприятия рецепторами внешней для мозга физической или химической энергии, трансформацией ее в нервные сигналы и передает их в мозг через цепи нейронов.
  Процесс передачи сенсорных сигналов сопровождается многократным их преобразованием и перекодированием и завершается высшим анализом и синтезом (опознанием образа), после чего формируется ответная реакция организма.
  Информация, поступающая в мозг, необходима для программирования и реализации простых и сложных рефлекторных актов вплоть до психической деятельности человека. И.М.Сеченов писал, что "психический акт не может явиться в сознании без внешнего чувственного возбуждения". Возбуждение - свойство живых организмов, активный ответ возбудимой ткани на раздражение. Для нервной системы возбуждение - одна из основных функций.
  Переработка сенсорной информации может сопровождаться, а может не сопровождаться осознанием стимула. Если осознание происходит, говорят об ощущении. Ощущение - отражение в сознании свойств предметов объективного мира, возникающее при их непосредственном воздействии на рецепторы.
  Различие ощущений приводит к восприятию. Восприятие - целостное отражение свойств предметов, ситуаций и событий, возникающее при непосредственном воздействии раздражителей на рецепторные поверхности органов чувств.
  Каждый анализатор настроен на определенную модальность сигнала и в то же время обеспечивает описание нескольких признаков воспринимаемых раздражителей. Так, зрительный анализатор, выделяя определенный участок электромагнитных колебаний, позволяет дифференцировать яркость, цвет, форму, удаленность и другие признаки объектов. Вместе с тем анализатор отражает связи между этими элементарными воздействиями в пространстве и времени.
  В зависимости от вида чувствительности различают зрительный, слуховой, обонятельный, вкусовой, кожный, двигательный анализаторы. В процессе филогенеза под влиянием окружающей среды анализаторы специализировались и совершенствовались путем непрерывного усложнения центральных и рецепторных систем.
  Изучение высшей нервной деятельности привело И.П. Павлова к представлению об анализаторах как системах, состоящих из рецепторов, афферентных проводящих путей и соответствующих участков коры больших полушарий.
  Введением термина "анализатор" И.П. Павлов подчеркивает, что анализ раздражений, начинающихся в органах чувств и заканчивающихся в коре больших полушарий, представляет собой единый процесс.
  Основными общими принципами построения сенсорных систем высших позвоночных животных и человека являются следующие:
  1) многослойность, то есть наличие нескольких слоев нервных клеток, первый из которых связан с рецепторами, а последний - с нейронами моторных областей коры большого мозга. Это свойство дает возможность специализировать нейронные слои на переработке разных видов сенсорной информации, что позволяет организму быстро реагировать на простые сигналы, анализируемые уже на первых уровнях сенсорной системы. Создаются также условия для избирательного регулирования свойств нейронных слоев путем восходящих влияний из других отделов мозга;
  2) многоканальность сенсорной системы, то есть наличие в каждом слое множества (от десятков тысяч до миллионов) нервных клеток, связанных с множеством клеток следующего слоя;
  3) разное число элементов в соседних слоях, что формирует "сенсорные воронки";
  4) дифференциация сенсорной системы по вертикали и по горизонтали. Дифференциация по вертикали заключается в образовании отделов, каждый из которых состоит из нескольких нейронных слоев. Дифференциация по горизонтали заключается в различных свойствах рецепторов, нейронов и связей между ними в пределах каждого из слоев.
  Основные функции сенсорной системы
  Сенсорная система выполняет следующие основные функции, или операции, с сигналами:
  - обнаружение;
  - различение;
  - передачу и преобразование;
  - кодирование;
  - детектирование признаков;
  - опознание образов.
  Обнаружение и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов - нейронами коры больших полушарий. Передачу, преобразование и кодирование сигналов осуществляют нейроны всех слоев сенсорных систем.
  Обнаружение сигналов начинается в рецепторе - специализированной клетке, эволюционно приспособленной к восприятию раздражителя определенной модальности из внешней или внутренней среды и преобразованию его из физической или химической формы в форму нервного возбуждения.
  Различение сигналов. Важная характеристика сенсорной системы - способность замечать различия в свойствах одновременно или последовательно действующих раздражителей. Различение начинается в рецепторах, но в этом процессе участвуют нейроны всей сенсорной системы. Оно характеризует то минимальное различие между стимулами, которое сенсорная система может заметить (дифференциальный, или разностный, порог).
  Передача и преобразование сигналов. Процессы преобразования и передачи сигналов в сенсорной системе доносят до высших центров мозга наиболее важную (существенную) информацию о раздражителе в форме, удобной для его надежного и быстрого анализа.
  Кодирование информации. Кодированием называют совершаемое по определенным правилам преобразование информации в условную форму - код.
  Детектирование сигналов - это избирательное выделение сенсорным нейроном того или иного признака раздражителя, имеющего поведенческое значение. Такой анализ осуществляют нейроны-детекторы, избирательно реагирующие лишь на определенные параметры стимула.
  Опознание образов представляет собой конечную и наиболее сложную операцию сенсорной системы. Она заключается в отнесении образа к тому или иному классу объектов, с которыми ранее встречался организм, то есть в классификации образов. Синтезируя сигналы от нейронов-детекторов, высший отдел сенсорной системы формирует "образ" раздражителя и сравнивает его с множеством образов, хранящихся в памяти. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм. В результате этого происходит восприятие, то есть мы осознаем, чье лицо видим перед собой, кого слышим, какой запах чувствуем.
 
 
 
 
 
 
 ЛАБОРАТОРНО-ПРАКТИЧЕСКИЕ ЗАНЯТИЯ
 
 ЗАНЯТИЕ № 1
 
 ТЕМА: Нервная клетка, строение и функция.
 
 ЦЕЛЬ ЗАНЯТИЯ: Изучить строение и функции нейрона, нервных волокон и синапса. Ознакомиться с методикой изучения данной темы в средней школе.
 
 ЛИТЕРАТУРА:
 1. Сапин М.Р., Билич Г.Л. Анатомия человека. М., 1989.
 2. Анатомия человека. 2 тома / Под ред. Сапина М.Р. М., 1993.
 3. Липченко В.Я., Самусов Р.П. Атлас нормальной анатомии. М., 1965.
 4. Синельников Р.Д. Атлас анатомии человека. М., 2 тома.
 5. Мозг / Под ред П.В. Симонова, М.,1984.
 6. Морфология нервной системы / Отв. ред. В.П Бабминдра, 1986.
 
 ПЛАН ЗАНЯТИЯ
 1. Строение нервной клетки, функция.
 2. Самостоятельная работа студентов при активной консультации преподавателя:
 а) Изучить строение нейрона по таблицам.
 б) Рассмотреть и зарисовать микропрепараты - биполярные, вставочные, двигательные нейроны, по характеру выделяемого ими медиатора; по электрофизиологическим свойствам (возбуждающие и тормозные).
 в) Рассмотреть и зарисовать нервные волокна: миелиновые и безмиелиновые.
 г) Рассмотреть и зарисовать строение синапса.
 
 ОБОРУДОВАНИЕ
 1. Таблицы: нервная клетка, синапс, нервные волокна.
 2. Микропрепараты: нервная клетка.
 
 ВОПРОСЫ
 1. Строение и функция нервных клеток.
 2. Нейроглия: макро- и микроглия. Астроциты, олигодендроциты, эпендимоциты.
 3. Нервная ткань и ее строение.
 4. Нервные волокна: миелиновые и безмиелиновые волокна.
 5. Строение синапса, свойства и функция. Медиаторы.
  В начале занятия с помощью таблиц и препаратов рассмотреть различные нейроны, нервные волокна и синапс.
  Под микроскопом рассматривают нейроны, нервные волокна, особенности миелиновых нервных волокон.
 
 ЗAHЯТИЕ № 2
 
 ТEМА: Спинной мозг, топография, строение, функции.
 
 ЦЕЛЬ ЗАНЯТИЯ: Изучить строение и функции спинного мозга, места от хождения и выхода спинномозговых нервов, области их иннервации. Понять рефлекторный характер деятельности нервной системы, усвоить понятие о рефлексе, простой и сложной рефлекторной дуге, цепи нейронов и нервных центрах. Ознакомиться с методикой изучения данной цепи в средней школе.
 
 ЛИТЕРАТУРА: см. занятие №1.
 
 ПЛАН ЗАНЯТИЯ
 1. Общий обзор строения спинного мозга, его оболочек, нервных сплетений.
 2. Самостоятельная работа студентов при активной консультации преподавателя:
 а) Изучить макро- и микроскопическое строение спинного мозга по таблицам, влажным препаратам, муляжам.
 б) Рассмотреть и зарисовать микропрепараты: поперечный срез спинного мозга, межпозвоночный ганглий.
 3. Разбор самостоятельной работы студентов.
 
 ОБОРУДОВАНИЕ
 1. Таблицы: спинной мозг (вид спереди и сзади), схема сегментов спинного мозга, поперечный разрез спинного мозга, схема рефлекторной дуги.
 2. Микропрепараты: спинной мозг, межпозвоночный ганглий.
 
 ВОПРОСЫ
 1. Какое строение имеет нейрон, спинной мозг. Сегмент спинного мозга.
 2. Как расположены в спинном мозге серое и белое вещество.
 3. Нервные центры, их расположение в спинном мозге и функция.
 4. Сколько существует различных типов нейронов в спинном мозге. Какие функции они выполняют.
 5. Спинномозговые нервы, как они образуются, на какие ветви распадаются.
 6. Какие четыре парных сплетения образуют передние ветви спинномозговых нервов.
 7. Какими спинномозговыми нервами образовано шейное сплетение, каковы его главные ветви и области иннервации.
 8. Какими спинномозговыми нервами образовано крестцовое сплетение, каковы его главные ветви и области иннервации.
 9. Онто- и филогенез спинного мозга.
 10. Оболочки спинного мозга. Спинномозговая жидкость, количество, функция.
 
 ЗАНЯТИЕ № 3
 
 ТЕМА: Отделы головного мозга и их функции.
 
 ЦЕЛЬ ЗАНЯТИЯ: Изучить строение и функции продолговатого мозга, моста (Варолиева моста), мозжечка, IV желудочка, ретикулярной формации. Ознакомиться с методикой изучения данной темы в средней школе.
 
 ЛИТЕРАТУРА: см. занятие №1.
 
 ПЛАН ЗАНЯТИЯ
 
 1. Обзор строения и функций вышеперечисленных отделов головного мозга.
 2. Самостоятельная работа по теме занятия:
 а) Изучить макроскопическое строение отделов головного мозга по влажным препаратам, муляжам, таблицам.
 б) Зарисовать отделы мозга на срединном продольном разрезе головного мозга: ствол, продолговатый мозг, мост, IV желудочек.
 
 ОБОРУДОВАНИЕ
 1. Модели: головной мозг (разборная модель); череп человека.
 2. Влажные препараты: головной мозг (сагиттальный разрез), мозговой ствол со вскрытым IV желудочком.
 3. Таблицы: основание мозга, головной мозг (сагитальный разрез) стволовая часть мозга.
 4. Микропрепарат мозжечка.
 
 
 ВОПРОСЫ
 1. Строение и функция продолговатого мозга.
 2. Ядра продолговатого мозга, их функция.

<< Пред.           стр. 3 (из 5)           След. >>

Список литературы по разделу