Математическое моделирование системных элементов

                     Математическое моделирование системных элементов

           Выдающийся итальянский физик и астроном, один из основателей точного естес-

твознания, Галилео Галилей (1564 - 1642гг.) говорил, что "Книга природы написана на языке математики". Почти через двести лет родоначальник немецкой классической фи-

лософии Иммануил Кант (1742 - 1804гг.) утверждал, что "Во всякой науке столько ис-

тины, сколько в ней математики". Наконец, ещё через почти сто пятьдесят лет, практи-

чески уже в наше время, немецкий математик и логик Давид Гильберт (1862 - 1943гг.) констатировал: "Математика - основа всего точного естествознания".

          Приведенные высказывания великих ученых, без дополнительных комментариев, дают полное представление о роли и значении математики как в научно-теоретической, так и предметно-практической деятельности специалистов.

                                        1.1.  Три этапа математизации знаний

         

           Современная методология науки выделяет три этапа математизации знаний: ма-

тематическая обработка эмпирических (экспериментальных) данных, моделирование и относительно полные математические теории.

         

          Первый этап - это математическая, чаще всего именно количественная обработка эмпирических (экспериментальных) данных. Это этап выявления и выделения чисто фе-

номенологических функциональных взаимосвязей (корреляций) между входными сигна-

лами (входами ) и выходными реакциями (откликами ) на уровне целостного объекта (явления, процесса), которые наблюдают в экспериментах с объектами-оригиналами .  Данный этап математизации имеет место во всякой науке и может быть определён как этап первичной обработки её эмпирического материала.

          Второй этап математизации знаний определим как модельный. На этом этапе не-которые объекты выделяются (рассматриваются) в качестве основных, базовых (фун-даментальных), а свойства (атрибуты), характеристики и параметры других объектов исследования объясняются и выводятся исходя из значений, определяемых первыми (назовем их оригиналами). Второй этап математизации характеризуется ломкой старых теоретических концепций, многочисленными попытками ввести новые, более глубокие и фундаментальные. Таким образом, на "модельном" этапе математизации, т.е. этапе математического моделирования, осуществляется попытка теоретического воспроизве-дения, "теоретической реконструкции" некоторого интересующего исследователя объек-та-оригинала в форме другого объекта - математической модели.

          Третий этап - это этап относительно полной математической теории данного уровня организации материи в данной или рассматриваемой предметной области. Тре-

тий этап предполагает существование логически полной системы понятий и аксиомати-

ки. Математическая теория даёт методологию и язык, пригодные для описания явлений, процессов и систем различного назначения и природы. Она даёт возможность преодоле-

вать узость мышления, порождаемую специализацией.

                                  1.2.  Математическое моделирование и модель

          Математическое моделирование - это теоретико-экспериментальный метод позна-

вательно-созидательной деятельности, это метод исследования и объяснения явлений, процессов и систем (объектов-оригиналов) на основе создания новых объектов - матема-

тических моделей.

          Под математической моделью принято понимать совокупность соотношений (уравнений, неравенств, логических условий, операторов и т.п.), определяющих характе-

ристики состояний объекта моделирования, а через них и выходные значения - реакции

, в зависимости от параметров объекта-оригинала ,  входных воздей-

ствий , начальных и граничных условий, а также времени.

          Математическая модель, как правило, учитывает лишь те свойства (атрибуты) объекта-оригинала , которые отражают, определяют и представляют интерес с точки зрения целей и задач конкретного исследования. Следовательно, в зависимости от целей моделирования, при рассмотрении одного и того же объекта-оригинала  с различных точек зрения и в различных аспектах, последний может иметь различные математичес-

кие описания и, как следствие, быть представлен различными математическими моделя-

ми.

          Принимая во внимание изложенное выше, дадим наиболее общее, но в то же время строгое конструктивное определение математической модели, сформулированное П.Дж.Коэном.

          Определение 2. Математическая модель - это формальная система, представляю-

щая собой конечное собрание символов и совершенно строгих правил оперирования этими символами в совокупности с интерпретацией свойств определенного объекта некоторыми отношениями, символами или константами.

          Как следует из приведенного определения, конечное собрание символов (алфавит) и совершенно строгих правил оперирования этими символами ("грамматика" и "синтак-

сис" математических выражений) приводят к формированию абстрактных математичес-

ких объектов (АМО). Только интерпретация делает этот абстрактный объект математи-

ческой моделью.

          Таким образом, исходя из принципиально важного значения интерпретации в тех-нологии математического моделирования, рассмотрим ее более подробно.

                            1.3. Интерпретации в математическом моделировании

          Интерпретация (от латинского "interpretatio" - разъяснение, толкование, истолко-

вание) определяется как совокупность значений (смыслов), придаваемых каким-либо об-

разом элементам некоторой системы (теории), например, формулам и отдельным симво-

лам. В математическом аспекте интерпретация - это экстраполяция исходных положе-

ний какой-либо формальной системы на какую-либо содержательную систему, исход-

ные положения которой определяются независимо от формальной системы. Следова-

тельно, можно утверждать, что интерпретация - это установление соответствия между некоторой формальной и содержательной системами. В тех случаях, когда формальная система оказывается применимой (интерпретируемой) к содержательной системе, т.е. ус-

тановлено что между элементами формальной системы и элементами содержательной системы существует взаимно однозначное соответствие, все исходные положения фор-

мальной системы получают подтверждение в содержательной системе. Интерпретация считается полной, если каждому элементу формальной системы соответствует некото-

рый элемент (интерпретант) содержательной системы. Если указанное условие наруша-

ется, имеет место частичная интерпретация.

          При математическом моделировании в результате интерпретации задаются значе-

ния элементов математических выражений (символов, операций, формул) и целостных конструкций.

          Основываясь на приведенных общих положениях, определим содержание интер-

претации применительно к задаче математического моделирования.

          Определение 3. Интерпретация в математическом моделировании - это информа-

ционный процесс преобразования абстрактного математического объекта (АМО) в кон-

кретную математическую модель (ММ) конкретного объекта на основе отображения

непустого информационного множества данных и знаний, определяемого АМО и называе-

мого областью интерпретации, в кообласть - информационное множество данных и зна-

ний, определяемое предметной областью и объектом моделирования и называемое об-

ластью значений интерпретации.

          Таким образом, интерпретацию следует рассматривать как один из основопола-

гающих механизмов (инструментов) технологии математического (научного) модели-

рования.

          Именно интерпретация, придавая смысл и значения элементам (компонентам) ма-

тематического выражения, делает последнее математической моделью реального объек-

та.

                                              1.4. Виды и уровни интерпретаций

          Создание математической модели системного элемента - многоэтапный процесс. Основным фактором, определяющим этапы перехода от АМО к ММ, является интер-

претация. Количество этапов и их содержание зависит от начального (исходного) ин-

формационного содержания интерпретируемого математического объекта - математи-

ческого описания и требуемого конечного информационного содержания математичес-

кого объекта - модели. Полный спектр этапов интерпретации, отражающий переход от АМО - описания к конкретной ММ, включает четыре вида интерпретаций: синтаксичес-

кую (структурную), семантическую(смысловую), качественную(численную) и количес-

твенную. В общем случае, каждый из перечисленных видов интерпретации может иметь многоуровневую реализацию. Рассмотрим более подробно перечисленные виды интер-

претаций.

                                                 Cинтаксическая интерпретация

          Синтаксическую интерпретацию будем рассматривать как отображение морфоло-

гической (структурной) организации исходного АМО в морфологическую организацию структуру заданного (или требуемого) АМО. Синтаксическая интерпретация может осуществляться как в рамках одного математического языка, так и различных матема-

тических языков.

          При синтаксической интерпретации АМО возможны несколько вариантов задач реализации.

      

          Задача 1. Пусть исходный АМО не структурирован, например, задан кортежем элементов. Требуется посредством синтаксической интерпретации сформировать мор-

фологическую структуру математического выражения

                                                                                                  (1)

          Задача 2. Пусть АМО имеет некоторую исходную морфологическую структуру,

которая по тем или иным причинам не удовлетворяет требованиям исследователя (эксперта). Требуется посредством синтаксической интерпретации преобразовать в со-

ответствии с целями и задачами моделирования исходную структуру Stв адекватную требуемую St

,т.е.

                                                                                              (2)

          Задача 3. Пусть АМО имеет некоторую исходную морфологическую структуру  St, удовлетворяющую общим принципам и требованиям исследователя с точки зрения её синтаксической организации. Требуется посредством синтаксической интерпретации конкретизировать АМО со структурой Stдо уровня требований, определяемых целями и задачами моделирования

                                                                                               (3)

          Таким образом, синтаксическая интерпретация математических объектов даёт воз-

можность формировать морфологические структуры АМО, осуществлять отображение (транслировать) морфологические структуры АМО с одного математического языка на другой, конкретизировать или абстрагировать морфологические структурные представ-

ления АМО в рамках одного математического языка.             

                                                Семантическая интерпретация

          Семантическая интерпретация предполагает задание смысла математических вы-

ражений, формул, конструкций, а также отдельных символов и знаков в терминах сфе-

ры, предметной области и объекта моделирования. Семантическая интерпретация даёт возможность сформировать по смысловым признакам однородные группы, виды, клас-

сы и типы объектов моделирования. В зависимости от уровней обобщения и абстраги-

рования или, наоборот, дифференциации или конкретизации, семантическая интерпре-

тация представляется как многоуровневый, многоэтапный процесс.

          Таким образом, семантическая интерпретация, задавая смысл абстрактному ма-                      

тематическому объекту, "переводит" последний в категорию математической модели с объекта-оригинала, в терминах которого и осуществляется такая интерпретация.

                                                 Качественная интерпретация

          Интерпретация на качественном уровне предполагает существование качествен-

ных параметров и характеристик объекта-оригинала, в терминах (значениях) которых и производится интерпретация. При качественной интерпретации могут использоваться графические и числовые представления, посредством которых, например, интерпретиру-

ется режим функционирования объекта моделирования.

                                               Количественная интерпретация

          Количественная интерпретация осуществляется за счет включения в рассмотрение количественных целочисленных и рациональных величин, определяющих значение па-

раметров, характеристик, показателей.

          В результате количественной интерпретации появляется возможность из класса, группы или совокупности аналогичных математических объектов выделить один един-

ственный, являющийся конкретной математической моделью конкретного объекта-ори-

гинала.

          Таким образом, в результате четырех видов интерпретаций - синтаксической, се-

мантической, качественной и количественной происходит поэтапная трансформация

АМО, например, концептуальной метамодели (КММ) функциональной системы  , в конкретную математическую модель (ММ) конкретного объекта моделирования.

Вместе с этим смотрят:

Математическое программирование
Матричный анализ
Метод Гаусса
Метод Гаусса с выбором главного элемента