Структура сходящихся последовательностей
Последовательность, у которой существует предел, называется сходящейся. Последовательность не являющаяся сходящейся называется расходящейся.
Определение: Последовательность {xn} называется сходящейся, если существует такое число а, что последовательность {xn-а} является бесконечно малой. При этом число а называется пределом последовательности {xn}.
В соответствии с этим определением всякая бесконечно малая последовательность является сходящейся и имеет своим пределом число ноль.
Можно, также, дать еще одно определение сходящейся последовательности: Последовательность {xn} называется сходящейся, если существует такое число а, что для любого положительного числа e можно указать номер N такой, что при niN все элементы xn этой последовательности удовлетворяют неравенству:
|xn-a|<e.
При этом число а называется пределом последовательности.
Некоторые свойства сходящихся последовательностей:
ТЕОРЕМА: Сходящаяся последовательность имеет только один предел.
Доказательство: Пусть a и b тАУ пределы сходящейся последовательности {xn}. Тогда, используя специальное представление для элементов xn сходящейся последовательности {xn}, получим xn=а+an, xn=b+bn, где an и bn тАУ элементы бесконечно малых последовательностей {an} и {bn}.
Вычитая данные соотношения, найдем an-bn=b-a. Так как все элементы бесконечно малой последовательности {an-bn} имеют одно и то же постоянное значение b-a, то (по теореме: Если все элементы бесконечно малой последовательности {an} равны одному и тому же числу с, то с=0) b-a=0, т.е. b=a. Теорема доказана.
ТЕОРЕМА: Сходящаяся последовательность ограничена.
Доказательство: Пусть {xn} - сходящаяся последовательность и а тАУ ее предел. Представим ее в следующем виде:
xn=а+an,
где an- элемент бесконечно малой последовательности. Так как бесконечно малая последовательность {an} ограничена (по теореме: Бесконечно малая последовательность ограничена.), то найдется такое число А, что для всех номеров n справедливо неравенство |an|РИА. Поэтому | xn | РИ |a| + A для всех номеров n, что и означает ограниченность последовательности {xn}. Теорема доказана.
Ограниченная последовательность может и не быть сходящейся. Например, последовательность 1, -1, 1, -1, тАж - ограничена , но не является сходящейся. В самом деле, если бы эта последовательность сходилась к некоторому числу а, то каждая из последовательностей {xn-a} и {xn+1-a} являлась бы бесконечно малой. Но тогда (по теореме: Разность бесконечно малых последовательностей есть бесконечно малая последовательность.) {(xn-a) тАУ (xn+1-a)}={xnтАУ xn+1} была бы бесконечно малой, что невозможно т.к. |xnтАУ xn+1| = 2 для любого номера n.
ТЕОРЕМА: Сумма сходящихся последовательностей {хn} и {yn} есть сходящаяся последовательность, предел которой равен сумме пределов последовательностей {хn} и {yn}.
Доказательство: Пусть а и b тАУ соответственно пределы последовательностей {хn} и {yn}. Тогда:
xn=а+an, yn=b+bn,
где {an} и {bn) тАУ бесконечно малые последовательности. Следовательно, (хn + yn) - (а + b) =an+bn.
Таким образом, последовательность {(хn + yn) - (а + b)} бесконечно малая, и поэтому последователдьность {хn + yn} сходится и имеет своим пределом число а+b. Теорема доказана.
ТЕОРЕМА: Разность сходящихся последовательностей {хn} и {yn} есть сходящаяся последовательность, предел которой равен разности пределов последовательностей {хn} и {yn}.
Доказательство: Пусть а и b тАУ соответственно пределы последовательностей {хn} и {yn}.Тогда:
xn=а+an, yn=b+bn,
где {an} и {bn) тАУ бесконечно малые последовательности. Следовательно, (хn - yn) - (а - b) =an-bn.
Таким образом, последовательность {(хn - yn) - (а - b)} бесконечно малая, и поэтому последователдьность {хn - yn} сходится и имеет своим пределом число а-b. Теорема доказана.
ТЕОРЕМА: Произведение сходящихся последовательностей {хn} и {yn} есть сходящаяся последовательность, предел которой равен произведению пределов последовательностей {хn} и {yn}.
Доказательство: Пусть а и b тАУ соответственно пределы последовательностей {хn} и {yn}, то xn=а+an, yn=b+bn и xnЧyn=aЧb+aЧbn+bЧan+anЧbn. Следовательно,
xnЧyn-аЧb=aЧbn+bЧan+anЧbn.
(в силу теоремы: Произведение ограниченной последовательности на бесконечно малую есть бесконечно малая последовательность.) последовательность {aЧbn+bЧan+anЧbn} бесконечно малая, и поэтому последовательность {xnЧyn-аЧb} тоже бесконечно малая, а значит последовательность {xnЧyn} сходится и имеет своим пределом число аЧb. Теорема доказана.
ЛЕММА: Если последовательность {yn} сходится и имеет отличный от ноля предел b, то, начиная с некоторого номера, определена последовательность , которая является ограниченной.
Доказательство: Пусть . Так как b№0, то e>0. Пусть N тАУ номер, соответствующий этому e, начиная с которого выполняется неравенство:
|yn-b|<e или |yn-b|<
из этого неравенства следует, что при niN выполняется неравенство |yn|>. Поэтому при niN имеем . Следовательно, начиная с этого номера N, мы можем рассматривать последовательность , и эта последовательность ограничена. Лемма доказана.
ТЕОРЕМА: Частное двух сходящихся последовательностей {xn} и {yn} при условии, что предел {yn} отличен от ноля, есть сходящаяся последовательность, предел которой равен частному пределов последовательностей {xn} и {yn}.
Доказательство: Из доказанной ранее леммы следует, что, начиная с некоторого номера N, элементы последовательности {yn} отличны от ноля и последовательность ограничена. Начиная с этого номера, мы и будем рассматривать последовательность . Пусть а и b тАУ пределы последовательностей {xn} и {yn}. Докажем, что последовательность бесконечно малая. В самом деле, так как xn=а+an, yn=b+bn, то
.Так как последовательность ограничена, а последовательность бесконечно мала, то последовательность бесконечно малая. Теорема доказана.
Итак, теперь можно сказать, что арифметические операции над сходящимися последовательностями приводят к таким же арифметическим операциям над их пределами.
ТЕОРЕМА: Если элементы сходящейся последовательности {xn}, начиная с некоторого номера, удовлетворяют неравентству xnib (xnРИb), то и предел а этой последовательности удовлетворяет неравенству аib (aРИb).
Доказательство: Пусть все элементы xn, по крайней мере начиная с некоторого номера, удовлетворяют неравенству xnib. Предположим, что а<b. Поскольку а тАУ предел последовательности {xn}, то для положительного e=b-a можно указать номер N такой, что при niN выполняется неравенство
|xn-a|<b-a.
Это неравенство эквивалентно
-(b-a)<xn-a<b-a
Используя правое из этих неравенств мы получим xn<b, а это противоречит условию теоремы. Случай xnРИb рассматривается аналогично. Теорема доказана.
Элементы сходящейся последовательности {xn} могут удовлетворять строгому неравенству xn>b, однако при этом предел а может оказаться равным b. Например, если xn=1/n, то xn>0, однако .
Следствие 1: Если элементы xn и уn у сходящихся последовательностей {xn} и {yn}, начиная с некоторого номера, удовлетворяют неравенству xn РИ уn, то их пределы удовлетворяют аналогичному неравенству
.
Элементы последовательности {yn-xn} неотрицательны, а поэтому неотрицателен и ее предел . Отсюда следует, что
.
Следствие 2: Если все элементы сходящейся последовательности {xn} находятся на сегменте [a,b], то и ее предел с также находится на этом сегменте.
Это выполняется, так как аРИxnРИb, то aРИcРИb.
ТЕОРЕМА: Пусть {xn} и {zn}- сходящиеся последовательности, имеющие общий предел а. Пусть, кроме того, начиная с некоторого номера, элементы последовательности {yn}удовлетворяют неравенствам xnРИynРИzn. Тогда последовательность {yn} сходится и имеет предел а.
Доказательство: достаточно доказать, что {yn-a} является бесконечно малой. Обозначим через NтАЩ номер, начиная с которого, выполняются неравенства, указанные в условии теоремы. Тогда, начиная с этого же номера, будут выполнятся также неравенства xn-а РИ yn-а РИ zn-а. Отсюда следует, что при niNтАЩ элементы последовательности {yn-a} удовлетворяют неравенству
|yn-a| РИ max {|xn-a|, |zn-a|}.
Так как и , то для любого e>0 можно указать номера N1 и N2 такие, что при niN1 |xn-a|<e, а при niN2 |zn-a|<e. Итак последовательность {yn-a} бесконечно малая. Теорема доказана.
Итак, мы показали неравенства, которым удовлетворяют элементы сходящихся последовательностей, в пределе переходят в соответствующие неравенства для пределов этих последовательностей.
ПРИМЕРЫ
- Последовательность сходится и имеет своим пределом ноль. Ведь каково бы ни было e>0, по свойству Архимеда вещественных чисел существует такое натуральное число ne, что ne>. Поэтому для всех nine, а это означает, что .
- Последовательность сходится и , что следует из того, что
, и того, что .
ЗАДАЧИ
ЗАДАЧА № 1
Пусть числовая последовательность а1, а2, а3, тАж удовлетворяет условию
(m, n = 1, 2, 3, тАж ),
тогда последовательность
,тАж
должна либо расходиться к , причем предел этой последовательности будет равен ее нижней грани.
РЕШЕНИЕ:
Видим частный случай теоремы у M. Fekete. Достаточно рассмотреть случай, когда нижняя грань a конечна. Пусть e>0 и a+e. Всякое целое число n может быть представлено в форме n=qm+r, где r=0 или 1, или 2, тАж, или m-1. Полагая единообразие а0=0, имеем:
an=aqm+rРИam+am+тАж+am+ar=qam+ar,
,
ЗАДАЧА № 2
Пусть числовая последовательность а1, а2, а3, тАж удовлетворяет условию
тогда существует конечный предел
,
причем
(n = 1, 2, 3, тАж ).
РЕШЕНИЕ:
Из неравенств 2am-1<a2m<2am+1 получаем:
(*)
Ряд
сходится, ибо в силу неравенства (*) он мажорируется сходящимся рядом:
|a1|+2-1+2-2+2-3+тАж
запишем целое число n по двоичной системе:
n=2m+e12m-1+e22m-2+тАж+em (e1, e2, тАж, em = 0 или 1)
согласно предположению
.
Применяя теорему (1) для данных:
s0=0, s1=, sm-1=, sm=, тАж, pn0=0, pn1=, тАж, pn, m-1=,
, pn, m+1=0, тАж,
заключаем, что . Наконец, в силу (*) имеем:
.
ЗАДАЧА № 3
Если общий член ряда, не являющегося ни сходящимся, ни расходящимся в собственном смысле, стремится к нулю, то частичные суммы этого ряда расположены всюду плотно между их нижним и верхним пределами lim inf и lim sup.
РЕШЕНИЕ:
Нам достаточно рассмотреть случай, когда частичные суммы s1, s2, тАж, sn, тАж ограничены. Пусть , , l - целое положительное число, l>2 и .
Разобьем числовую прямую на l интервалов точками
-ТР, m+d, m+2d, тАж, M-2d, M-d, +ТР.
Выберем такое N, чтобы для n>N выполнялось неравенство |sn-sn+1|<d. Пусть, далее, sn1 (n1>N) лежит в первом интервале и sn2 (n2> n1) тАУ в последнем. Тогда числа конечной последовательности не смогут тАЬперепрыгнутьтАЭ ни один из l-2 промежуточных интервалов длиной d. Аналогично рассуждаем и в том случае, когда последовательность будет не Влмедленно восходящейВ», а Влмедленно нисхожящейВ».
ЗАДАЧА № 4
Пусть для последовательности t1, t2, тАж , tn, тАж существует такая последовательность стремящихся к нулю положительных чисел тАж, что для каждого n
.Тогда числа t1, t2, тАж , tn, тАжлежат всюду плотно между их нижним и верхним пределами.
РЕШЕНИЕ:
Существуют в сколь угодно большом удалении конечные последовательности , произвольно медленно нисходящие от верхнего предела последовательности к ее нижнему пределу.
ЗАДАЧА № 5
Пусть v1, v2, тАж , vn, тАж - положительные числа, v1 РИ v2 РИ v3 тАж Совокупность предельных точек последовательности
, тАж
заполняет замкнутый интервал (длина которого равна нулю, если эта последовательность стремится к пределу).
РЕШЕНИЕ:
ЗАДАЧА № 6
Числовая последовательность, стремящаяся к , имеет наименьший член.
РЕШЕНИЕ:
Какое бы число мы ни задали, слева от него будет находиться лишь конечное число членов последовательности, а среди конечного множества чисел существует одно или несколько наименьших.
ЗАДАЧА № 7
Сходящаяся последовательность имеет либо наибольший член, либо наименьший, либо и тот и другой.
РЕШЕНИЕ:
При совпадении верхней и нижней граней рассматриваемой последовательности теорема тривиальна. Пусть поэтому они различны. Тогда по крайней мере одна из них отличается от предела последовательности. Она и будет равна наибольшему, соответственно наименьшему, члену последовательности.
ЗАДАЧА № 8
Пусть l1, l2, l3, тАж , lm, тАж - последовательность положительных чисел и , тогда существует бесконечно много номеров n, для которых ln меньше всех предшествующих ему членов последовательности l1, l2, l3, тАж , ln-1.
РЕШЕНИЕ:
Пусть задано целое положительное число m и h тАУ наименьшее из чисел l1, l2, l3, тАж , lm; h>0. Согласно предположению в рассматриваемой последовательности существуют члены, меньше чем h. Пусть n тАУ наименьший номер, для которого ln<h. Тогда:
n>m; ln<l1, ln<l2, тАж, ln<ln-1.
ЗАДАЧА № 9
Пусть l1, l2, l3, тАж , lm, тАж - последовательность положительных чисел и , тогда существует бесконечно много номеров n, для которых ln превосходит все следующие за ним члены ln+1, ln+2, ln+3,тАж
ЗАДАЧА № 10
Пусть числовые последовательности
l1, l2, l3, тАж , lm, тАж (lm>0),
s1, s 2, s 3, тАж , s m, тАж (s1>0, sm+1>sm, m=1, 2, 3, тАж)
обладают тем свойством, что
, .
Тогда существует бесконечно много номеров n, для которых одновременно выполняются неравенства
ln>ln+1, ln>ln+2, ln>ln+3, тАж
lnsn>ln-1sn-1, lnsn>ln-2sn-2, тАж lnsn>l1s1,
РЕШЕНИЕ:
Будем называть lm ВлвыступающимВ» членом последовательности, если lm больше всех последующих членов. Согласно предположению в первой последовательности содержится бесконечно много выступающих членов; пусть это будут:
,тАж
Каждый невыступающий член lv заключается (для v>n1) между двумя последовательными выступающими членами, скажем nr-1<v<nr. Имеем последовательно:
,
значит
(*)
отсюда заключаем, что
Действительно, в противном случае , значит, в силу (*) и вся последовательность l1s1, l2s2, тАж были бы ограничены, что противоречит предположению. Теперь пусть задано целое положительное число m и h тАУ наименьшее из чисел ,тАж ; h>0. Согласно предположению в рассматриваемой последовательности существуют члены, меньше чем h. Пусть k тАУ наименьший номер, для которого <h. Тогда:
k>m; .
ЗАДАЧА № 11
Если числовая последовательность ,тАж стремится к и А превышает ее наименьший член, то существует такой номер n (возможно несколько таких), ni1, что n отношений
все не больше А, а бесконечное множество отношений
,тАжвсе не меньше А.
РЕШЕНИЕ:
Имеем . Пусть минимум последовательности
L0-0, L1-A, L2-2A, L3-3A, тАж
Будет Ln-nA; тогда
Ln-u-(n-u)Ai Ln-nA; Ln+v-(n+v)Ai Ln-nA,
u=1, 2, тАж, n; v=1, 2, 3, тАж; n=0 исключено в силу предложений относительно А.
ЗАДАЧА № 12
Пусть относительно числовой последовательности l1, l2, l3, тАж , lm, тАж предполагается лишь, что
.Пусть, далее, А>l1. Тогда существует такой номер n, n i 1, что одновременно выполняются все неравенства
.Если АВоТР, то также nВоТР.
РЕШЕНИЕ:
Пусть
l1+l2+l3+тАж+lm=Lm, m=1, 2, 3, тАж; L0=0.
Так как L1-A<0, то L0-0 не является минимумом в предыдущем решении. ln+1iA; поэтому ln+1, а следовательно и n должны стремиться к бесконечности одновременно с А.
ЗАДАЧА № 13
Пусть числовая последовательность l1, l2, l3, тАж , lm, тАж удовлетворяет условиям
,
Пусть, далее, l1>A>0. Тогда существует такой номер n, n i 1, что одновременно выполняются все неравенства
.Если АВо0, то также nВо0.
РЕШЕНИЕ:
Положим
l1+l2+l3+тАж+lm=Lm, m=1, 2, 3, тАж; L0=0.
Тогда . Последовательность
L0-0, L1-A, L2-2A, L3-3A, тАж, Lm-mA, тАж
стремится к -ТР. Пусть ее наибольший член будет Ln-nA. Тогда интересующие нас неравенства будут выполняться для этого номера n.
В последовательности L0, L1, тАж, Lm, тАж содержится бесконечно много членов, превышающих все предыдущие. Пусть Ls будет один из них. Тогда числа:
все положительны: коль скоро А меньше наименьшего из них, соответствующий А номер n больше или равен s. Точки (n, Ln) должны быть обтянуты теперь бесконечным выпуклым сверху полигоном.
Вместе с этим смотрят:
СфераТезис Геделя. Теорема Черча
Тела вращения
Теорема о двух прямых, перпендикулярных плоскости