О вопросах звуковысотного интонирования
В 19 веке, с появлением работы Гельмгольца ВлDie Lehre von den Tonempfindungen als physiologiche Grundlage fur die Theorie der Music, Braunschweig, 1863[1]
В» было положено начало новому научному разделу в музыкальной теории тАУ музыкальной психофизиологии. В последовавшей волне исследований, в этой области были сделаны важные открытия, среди которых на особом месте стоит теория Н. А. Гарбузова о зонной природе слухового восприятия звука. Она положила начало иному подходу к трактовке звуковысотных отношений в музыкальных системах, позволила качественно повысить воспитание музыкального слуха в образовательном процессе. В то же время в своих выводах Н. А. Гарбузов не в полной мере раскрыл содержание своего открытия в понимании звуковысотных функций музыкальных ступеней[2]
.
Чтобы объяснить, в чем это проявилось, нам необходимо сделать небольшое отступление для краткого исторического обзора проблемы.
Музыкальный строй, как отражение уровня гармонического мышления для каждой эпохи, влиял на математический строй и заставлял его изменяться. Наглядным примером этому служит процесс трансформации математического строя в европейской музыке от пифагорова к 12-ступенному равномерно-темперированному. И в этом основную роль сыграла способность человеческого слуха к звуковысотному интонированию.
Первый теоретический музыкальный строй, обоснованный математическими расчетами, был создан Пифагором, по имени которого он называется и по настоящее время. В его основе лежат квинтовые отношения с интервальным коэффициентом 3/2. Выделяя одну ступень в качестве исходной и двигаясь от нее по квинтам, Пифагор определял настройку всех остальных двенадцати ступеней[3]
. Его строй был единственным известным математическим строем, применявшимся в настройке музыкальных инструментов до появления чистого строя. Отметим, что любая музыкальная ступень, любой музыкальный интервал понимались только в том звуковысотном значении, на которое были настроены. Причем такое понимание звуковысотного содержания музыкальных интервалов и ступеней было перенесено и на музыкальную ладовую систему в целом, как для инструментов с фиксированным строем, так и с нефиксированным. То есть за каждой музыкальной ступенью, за каждым музыкальным интервалом закрепилось определенное звуковысотное значение, которое определяется музыкальным строем. Такой подход к звуковысотной трактовке музыкальных ступеней и интервалов Н. А. Гарбузов назвал точечным.
При невысоком уровне гармонического мышления пифагоров строй вполне удовлетворял музыкальным требованиям того времени. С появлением многоголосия произошел относительно резкий (в течение нескольких столетий) скачок в сторону повышения уровня гармонического мышления. Большую самостоятельность стала приобретать инструментальная музыка, шло усложнение вертикали, а главное, расширялась тонально-модуляционная сфера. И если в XVI веке в трактате ВлДодекахордонВ» Глареана Влтрадиционная система восьми ладов была расширена до двенадцатиВ»[4]
, что еще в какой-то мере позволял пифагоров строй, то к XVIII веку он стал препятствием на пути дальнейшего развития гармонии. В первой половине XVIII века И. С. Бах стал использовать равномерно-темперированный строй на практике, чем обеспечил расширение тонально-модуляционной сферы до 24 ладотональностей.
Характерной особенностью пифагорова строя является то, что, в пределах семиступенной диатоники и ее расширениях, до определенного предела, он является равномерно-темперированным. То есть настройка всех одноименных интервалов одинакова[5]
. Так, большие терции имеют настроечный интервальный коэффициент 82/64 (408 центов), большие секунды тАУ 9/8 (204 цента) и т.д. Но при выходе за эти пределы положение меняется. Так, например, к большим терциям в 408 центов прибавляются большие терции в 384 цента[6]
, у малых секунд тАУ 114 и 90 центов, у больших секунд тАУ 204 и 180 цента, у малых терций тАУ 317 и 294 центов[7]
. Такая двойственность стала помехой привычному звуковысотному интонированию, заставляя перестраивать слуховое восприятие, в зависимости от тональности, модуляционного движения или транспонирования. А также, проявлялась при настройке музыкальных инструментов. Объяснение данного явления через введение понятий уменьшенных и увеличенных интервалов (кварт, квинт, терций, секунд) не помогали слуховому восприятию.
Возможно, этот недостаток был выявлен еще современниками Пифагора, в частности Аристоксеном и его сторонниками. По крайней мере, можно предположить, что неполная равномерная темперация пифагорова строя выявлялась уже тогда, но не в такой мере, чтобы помешать его всеобщему распространению и практическому применению. Возможно, они просто более тонко чувствовали значительное расхождение между настройкой большой терции и звуковым интервалом с коэффициентом 5/4.
К недостаткам пифагорова строя и в первую очередь к вопросу о консонантности терций и чистоте их настройки теоретики вернулись в XII веке. Франко Кельнский сформулировал свое учение о консонансах[8]
. Позже возник вопрос о точности настройки терций, в частности большой терции. Как консонантный интервал она должна настраиваться на звуковой интервал с коэффициентом 5/4, что расходилось ее настройкой в пифагоровом строе примерно на 23 цента. Процесс перехода от пифагорова строя к ВлчистомуВ», где большая терция должна была настраиваться в звуковом значении 5/4, растянулся на века.
В XVI веке Дж. Царлино Влокончательно ниспроверг систему Пифагора, доказал возможность использования больших терций как консонансов. Пифагорейская большая терция (81/64) была заменена ВлчистойВ» (без биений) большой терцией (5/4=80/64)В»[9]
.
Казалось бы, что музыкальная исполнительская практика должна была перейти к нему. Но этот строй в окончательном виде так и не был создан. С его появлением в еще большей мере проявился другой, до этого скрытый недостаток пифагорова строя тАУ отсутствие полной равномерной темперации[10]
. В течение столетия появлялись и исчезали разные виды темпераций[11]
, пока И. С. Бах не использовал в своем творчестве 12-ступенной равномерно темперированный строй, который до того математически был определен Мерсенном.
Своим появлением равномерно-темперированнный строй нарушил стройное представление о природных основаниях музыкальной гармонии, ведь в нем отсутствуют природные феномены, даже настройка квинты отличается от чистой на 2 цента. Возникла неразрешимая дилемма тАУ с одной стороны существовала функциональная система музыкального гармонического анализа, основы которой заложил Ж. Ф. Рамо, имеющая в своем основании природные феномены, и обеспечивающая достаточно подробный гармонический анализ практически любого музыкального произведения, с другой тАУ музыкальная европейская практика, полностью перешедшая к равномерно-темперированному строю.
Решение данной проблемы было отложено до определенного времени, хотя со стороны отдельных теоретиков и экспериментаторов проводились попытки создания строя объединяющего в себе пифагоров, ВлчистыйВ» и равномерно-темперированный строи. Все они имели в своем основании точечный подход к звуковысотной трактовке музыкальных ступеней и интервалов. Такой подход подразумевает, что любые музыкальные ступени, музыкальные интервалы воспринимается только в том звуковысотном значении, на которое настроены. До настоящего времени, в период полного господства 12-ступенного равномерно-темперированного строя, в некоторых теоретических исследованиях поднимается вопрос о том, какой строй более точно отражает звуковысотные отношения между музыкальными ступенями[12]
.
С появлением в конце 19 века музыкальной психофизиологии (акустической психофизиологии) как науки, ученые снова вернулись к этому вопросу в своих исследованиях. Но вопрос уже был поставлен иначе тАУ насколько необходима точная настройка отдельных интервалов на их характерные гармонические отношения. Свое окончательное решение он получил в созданной Н. А. Гарбузовым теории о зонной природе слуха. Следует отметить, что и после появления данной теории точечный подход к музыкальным акустическим явлениям остался. Об этом свидетельствует и объяснение обертонов на основе музыкального звукоряда во многих учебниках по элементарной теории музыкальной гармонии (см. сноску 2) и продолжающиеся попытки построить строй с Влчистой интонациейВ», основываясь на ВлточечномВ» подходе к музыкальным ступеням. Число ступеней в одном из таких строев достигло 84[13]
. Это заставляет нас подробно остановиться на исследованиях Н. А. Гарбузова и рассмотреть их результаты несколько с иных позиций.
Основной интерес для нас представляет работа ВлЗонная природа звуковысотного слухаВ» (4, с. 80-145), в которой Н. А. Гарбузов привел условия проведения экспериментов и результаты своих исследований по особенностям слухового восприятия музыкальных звуков и интервалов.
Вкратце рассмотрим суть и условия проводившихся исследований.
В первой главе ученый описывает исследования по абсолютному слуху, то есть точности определения высоты одиночного звука. В ходе исследований он определил, что испытуемые воспринимают высоту одиночного звука не с абсолютной точностью, а в некоторой звуковысотной зоне и данный вид слуха правильнее называть Влзонным слухомВ». Ширина зоны абсолютного слуха Влесть величина переменная, зависящая от регистра, в котором воспроизведен звук, тембра и громкости воспроизводимого звука, индивидуальности испытуемого, его психического состоянияВ»[14]
. Основываясь на опытах Абрагама, Гарбузов предположил, что наименьшая величина зоны абсолютного слуха (в среднем) равна 50 центам, причем, до этого значения ее можно сузить Влпутем упражненийВ»[15]
.
Из этой части исследований Гарбузов сделал следующий вывод: ВлТак как у лиц, обладающих абсолютным слухом, эталоном высоты служат представления звуков, то можно утверждать, что нашим высотным представлениям звуков соответствуют не частоты, а полосы частот (зоны)В»[16]
.
Следующая глава посвящена исследованиям в области относительного (интервального) слуха и имеет для нас особое значение.
При проведении экспериментов Гарбузов рассматривал следующие интервалы[17]
:
- прима (0 полутонов, 0 центов);
- м. секунда (1 полутон, 100 центов);
- б. секунда (2 полутона, 200 центов);
- м. терция (3 полутона, 300 центов);
- б. терция (4 полутона, 400 центов);
- кварта (5 полутонов, 500 центов);
- тритон (6 полутонов, 600 центов);
- квинта (7 полутонов, 700 центов);
- м. секста (8 полутонов, 800 центов)
- б. секста (9 полутонов, 900 центов);
- м. септима (10 полутонов, 1000 центов);
- б. септима (11 полутонов, 1100 центов);
При проведении испытаний с помощью специальной аппаратуры производились фиксируемые изменения настройки музыкальных интервалов и определялось когда испытуемый переставал воспринимать его гармоническое качество.
В ходе экспериментов Н. А. Гарбузов выявил наличие промежуточных интервалов, то есть таких, которые испытуемые не могли отнести ни к какому близлежащему музыкальному интервалу.
Результаты исследований Н. А. Гарбузов свел в таблицы, которые мы (объединив по разделам и опустив границы зон интервалов) приводим ниже тАУ таблицы 1, 2. В таблице 1 приведены значения зон для интервалов, в которых они сохраняют свое гармоническое качество. В таблице 2 тАУ значения для промежуточных зон, в которых музыкальные интервалы это качество теряют.
Таблица 1.
Наименование основных интервалов | Гармонические интервалы | Мелодические интервалы |
Прима (унисон) М. секунда Б. секунда М. терция Б.терция Кварта Тритон Квинта М. секста Б.секста М. септима Б. септима | 60 64 64 64 58 58 64 58 64 58 58 70 | 24 76 70 58 58 58 64 58 64 64 58 70 |
Вместе с этим смотрят:
"God Save The King" или "Боже, царя храни"
"Quo vadis": проекцiя на сучаснiсть
"Звезды" немого кино и русская мода 1910-х годов