Генетика, особенности индивидуального развития

Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысячеВнлетий человек пользовался генетическими методами для улучшения домашних животных и возделываеВнмых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разноВнобразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из приВнродных популяций и скрещивая их между соВнбой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.

Однако лишь в начале XX в. ученые стали осознаВнвать в полной мере важность законов наследственВнности и ее механизмов. Хотя успехи микроскопии позволили установить, что наследственные признаВнки передаются из поколения в поколение через сперматозоиды и яйцеклетки, оставалось неясным, каким образом мельчайшие частицы протоплазмы могут нести в себе ВлзадаткиВ» того огромного мноВнжества признаков, из которых слагается каждый отдельный организм.

Первый действительно научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором
Менделем, который в 1866 г. опубликовал статью, заложившую основы совреВнменной генетики. Мендель показал, что наследстВнвенные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособленВнных) единиц. Эти единицы, представленные у особей парами, остаются дискретными и передаются поВнследующим поколениям в мужских и женских гаВнметах, каждая из которых содержит по одной единиВнце из каждой пары. В 1909 г. датский ботаник Иогансен
назвал эти единицы тАЬ
гедамтАЭ, а в 1912 г. американский генетик Морган показал, что они находятся в хромосомах. С тех пор генетика достигВнла больших успехов в объяснении природы наследВнственности и на уровне организма, и на уровне гена.


1. Природа генов.

Изучение наследственности уже давно было связано с преставлением о ее корпускулярной природе. В 1866 г. Мендель высказал предположение, что признаки организмов определяются наследуемыми единицами, которые он назвал тАЬэлементамитАЭ. Позднее их стали называть тАЬфакторамитАЭ и, наконец, генами; было показано, что гены находятся в хромосомах, с которыми они и передаются от одного поколения к другому.

Несмотря на то, что уже многое известно о хромосомах и структуре ДНК, дать определение гена очень трудно, пока удалось сформулировать только три возможных определения гена:

а)ген как единица рекомбинации.

На основании своих работ по построению хромосомных карт дрозофилы Морган постулировал, что ген - это наименьший участок хромосомы, который может быть отделен от примыкающих к нему участков в результате кроссинговера. Согласно этому определению, ген представляет собой крупную единицу, специфическую область хромосомы, определяющую тот или иной признак организма;

б) ген как единица мутирования.

В результате изучения природы мутаций было установлено, что изменения признаков возникают вследствие случайных спонтанных изменений в структуре хромосомы, в последовательности оснований или даже в одном основании. В этом смысле можно было сказать, что ген - это одна пара комплиментарных оснований в нуклеотидной последовательности ДНК, т.е. наименьший участок хромосомы, способный претерпеть мутацию.

в) ген как единица функции.

Поскольку было известно, что от генов зависят структурные, физиологические и биохимические признаки организмов, было предложено определять ген как наименьший участок хромосомы, обусловливающий синтез определенного продукта.

2. Исследования Менделя.

Грегор
Мендель родился в Моравии
в 1822 г. В 1843 г. он поступил в монастырь августинцев в Брюние
(ныне Брно,
Чехословакия), где принял духовный сан. Позже он отправился в Вену, где провел два года, изучая в университете естественВнную историю и математику, после чего
в 1853 г. вернулся в монастырь. Такой выбор предметов, несомненно, оказал существенное влияние на его последующие работы по наследованию признаков у гороха. Будучи в Вене, Мендель заинтересовался процессом гибридизации растений и, в частности, разными типами гибридных потомков и их стаВнтистическими соотношениями. Эти проблемы и явиВнлись предметом научных исследований Менделя, которые он начал летом 1856 г.

Успехи, достигнутые Менделем, частично обуВнсловлены удачным выбором объекта для экспериВнментов-гороха огородного
isumsativum). МенВндель удостоверился, что по сравнению с другими этот вид обладает следующими преимуществами:

1) имеется много сортов, четко различающихся по ряду признаков;

2) растения легко выращивать;

3) репродуктивные органы полностью прикрыты лепестками, так что растение обычно самоопыляется;
поэтому его сорта размножаются в чистоте, т.е. их признаки из поколения в поколение остаВнются неизменными;

4) возможно искусственное скрещивание сортов, и оно дает вполне плодовитых гибридов. Из 34 сортов гороха Мендель отобрал 22 сорта, обладающие четко выраженными различиями по ряду признаков, и использовал их в своих опытах со скрещиванием. Менделя интересовали семь главных признаков: высота стебля, форма семян, окраска семян, форма и окраска плодов, расположение и окраска цветков.

И до Менделя многие ученые проводили подобВнные эксперименты на растениях, но ни один из них не получил таких точных и подробных данных; кроме того, они не смогли объяснить свои результаВнты с точки зрения механизма наследственности. Моменты, обеспечившие Менделю успех, следует признать необходимыми условиями проведения всяВнкого научного исследования и принять их в качестве образца. Условия эти можно сформулировать слеВндующим образом:

1) проведение предварительных исследований для ознакомления с экспериментальным объектом;

2) тщательное планирование всех экспериментов, с тем чтобы всякий раз внимание было сосредотоВнчено на одной переменной, что упрощает наВнблюдения;

3) строжайшее соблюдение всех методик, с тем чтобы исключить возможность введения переВнменных, искажающих результаты (подробности см. ниже);

4) точная регистрация всех экспериментов и запись всех полученных результатов;

5) получение достаточного количества данных, чтоВнбы их можно было считать статистически достоВнверными.

Как писал Мендель, Влдостоверность и полезность всякого эксперимента определяются пригодностью данного материала для тех целей, в которых он используетсяВ».

Следует, однако, отметить, что в выборе экспериВнментального объекта Менделю кое в чем и просто повезло: в наследовании отобранных им признаВнков не было ряда более сложных особенностей, открытых позднее, таких как неполное доминироваВнние, зависимость более чем от одной пары генов, сцепление генов.

2.1. Наследование при моногибридном скрещивании и закон расщепления.

Для своих первых экспериментов Мендель выбирал растения двух сортов, четко различавшихся по какому-либо признаку, например по расположению цветков: цветки могут быть распределены по всему стеблю (пазушные) или находиться на конце стебля (верхушечные). Растения, различающиеся по одной паре альтернативных признаков, Мендель выращиВнвал на протяжении ряда поколений. Семена от пазушных цветков всегда давали растения с пазушВнными цветками, а семена от верхушечных цветков- растения с верхушечными цветками. Таким обраВнзом, Мендель убедился, что выбранные им растения размножаются в чистоте (т.е. без расщепления поВнтомства) и пригодны для проведения опытов по гибридизации (экспериментальных скрещиваний).

Его метод состоял в следующем: он удалял у ряда растений одного сорта пыльники до того, как могло произойти самоопыление (эти растения Мендель называл ВлженскимиВ»); пользуясь кисточкой, он наВнносил на рыльца этих ВлженскихВ» цветков пыльцу из пыльников растения другого сорта; затем он надевал на искусственно опыленные цветки маВнленькие колпачки, чтобы на их рыльца не могла попасть пыльца с других растений. Мендель проВнводил реципрокные скрещивания - переносил пыльцеВнвые зерна как с пазушных цветков на верхушечные, так и с верхушечных на пазушные. Во всех слуВнчаях из семян, собранных от полученных гибридов, вырастали растения с пазушными цветками. Этот признак-Влпазушные цветкиВ»,-наблюдаемый у расВнтений первого гибридного поколения, Мендель назвал доминантным; позднее, в 1902 г., Бэтсон и Сондерс
стали обозначать первое поколение гибридВнного потомства символом F1
. Ни у одного из растений F1
не было верхушечных цветков.

На цветки растений F
1 Мендель надел колпачки (чтобы не допустить перекрестного опыления) и дал им возможность самоопылиться.
Семена, собранВнные c растений F
1, были пересчитаны и выВнсажены следующей весной для получения второго гибридного поколения, F
2 (поколение F
2 - это всегда результат инбридинга в поколении F
1, в данном случае самоопыления). Во втором гибридном поВнколении у одних растений образовались пазушные цветки, а у других - верхушечные. Иными словами, признак Влверхушечные цветкиВ», отсутствовавший в поколении F
1, вновь появился в поколении F2
. Мендель рассудил, что этот признак присутствовал в поколении F
1 в скрытом виде, но не смог проВнявиться; поэтому он назвал его рецессивным. Из 858 растений, полученных Менделем в F2,
у 651 были пазушные цветки, а у 207-верхушечные. Мендель провел ряд аналогичных опытов, используя всякий раз одну пару альтернативных признаков. РезультаВнты экспериментальных скрещиваний по семи парам таких признаков приведены в табл. 1.

Признак

Родительские растения

Поколение F2

Отношение

Доминантный признак

рецессивный признак

доминантные

рецессивные

Высота стебляВысокийНизкий7872772,84 : 1
СеменаГладкиеМорщинистые547418502,96 : 1
Окраска семянЖелтыеЗеленые602220013,01 : 1
Форма плодовПлоскиеВыпуклые8822992,95 : 1
Окраска плодовЗеленыеЖелтые4281522,82 : 1
Положение цветковПазушныеВерхушеч-ные6512073,14 : 1
Окраска цветковКрасныеБелые7052243,15 : 1
Итого1494950102,98 : 1

Таблица 1.Результаты экспериментов Менделя по наследованию семи пар альтернативных признаков.

(Наблюдаемое соотношение доминантных и рецессивных признаков приближается к теоретически ожидаемому 3 : 1).

Во всех случаях анализ результатов показал, что отношение доминантных признаков к рецессивным в поколении F2 составляло примерно 3 : 1.

Приведенный выше пример типичен для всех экспериментов Менделя, в которых изучалось наслеВндование одного признака (моногибридные скрещивания).

На основании этих и аналогичных результатов Мендель сделал следующие выводы:

1. Поскольку исходные родительские сорта размноВнжались в чистоте (не расщеплялись), у сорта с пазушными цветками должно быть два ВлпазушВнныхВ» фактора, а у сорта с верхушечными цветкаВнми - два ВлверхушечныхВ» фактора.

2. Растения F1 содержали по одному фактору, полуВнченному от каждого из родительских растений через гаметы.

3. Эти факторы в F1 не сливаются, а сохраняют свою индивидуальность.

4. ВлПазушныйВ» фактор доминирует над ВлверхушечВннымВ» фактором, который рецессивен. Разделение пары родительских факторов при обВнразовании гамет (так что в каждую гамету попадает лишь один из них) известно под названием первого закона Менделя, или закона расщепления. Согласно этому закону, признаки данного организма детермиВннируются парами внутренних факторов. В одной гамете может быть представлен лишь один из кажВндой пары таких факторов.

Теперь мы знаем, что эти факторы, детерминиВнрующие такие признаки, как расположение цветка, соответствуют участкам хромосомы, называемым генами.

Описанные выше эксперименты, проводившиеся Менделем при изучении наследования одной пары альтернативных признаков, служат примером моногибридного скрещивания.

2.2. Возвратное, или анализирующее, скрещивание.

Организм из поколения F1, полученного от скрещиВнвания между гомозиготной доминантной и гомозиготной рецессивной особями, гетерозиготен по своему генотипу, но обладает доминантным феВннотипом. Для того чтобы проявился рецессивный фенотип, организм должен быть гомозиготным
по рецессивному аллелю. В поколении F2особи с доминантным фенотипом могут быть как гомозиготами, таки гетерозиготами. Если селекционеру понадобилось выяснить генотип такой особи, то единственным способом, позволяющим сделать это, служит эксперимент с использованием метода, наВнзываемого анализирующим ( возвратным ) скрещиваВннием. Скрещивая организм неизвестного генотипа с организмом, гомозиготным по рецессивному аллелю изучаемого гена, можно определить этот геноВнтип путем одного скрещивания. Например, у плодоВнвой мушки Drosophila длинные крылья доминируют над зачаточными. Особь с длинными крыльями может быть гомозиготной (LL) или гетерозиготной (Ll). Для установления ее генотипа надо провести анализирующее скрещивание между этой мухой и мухой, гомозиготной по рецессивному аллелю (ll). Если у всех потомков от этого скрещивания будут длинные крылья, то особь с неизвестным генотиВнпом - гомозигота по доминантному аллелю. ЧисВнленное соотношение потомков с длинными и с зачаточными крыльями 1 : 1 указывает на гетерозиготность особи с неизвестным генотипом.

2.3. Дигибридное скрещивание изакон независимого распределения.

Установив возможность предсказывать результаты скрещиваний по одной паре альтернативных приВнзнаков, Мендель перешел к изучению наследования двух пар таких признаков. Скрещивания между особями, различающимися по двум признакам, наВнзывают дигибридными.

В одном из своих экспериментов Мендель испольВнзовал растения гороха, различающиеся по форме и окраске семян. Применяя метод, описанный в разд. 2.1, он скрещивал между собой чистосортные ( гомозиготные) растения с гладкими желтыми семенами и чистосортные растения с морщинистыВнми зелеными семенами. У всех растений F1 (первого поколения гибридов) семена были гладкие и желВнтые. По результатам проведенных ранее моногибридных скрещиваний Мендель уже знал, что эти признаки доминантны; теперь, однако, его интеВнресовали характер и соотношение семян разных талов в поколении F2, полученном от растений F1 путем самоопыления. Всего он собрал от растений F2556 семян, среди которых было

гладких желтых 315

морщинистых желтых 101

гладких зеленых 108

морщинистых зеленых 32

Соотношение разных фенотипов составляло приВнмерно 9: 3: 3: 1 (дигибридное расщепление). На основании этих результатов Мендель сделал два вывода:

1. В поколении F2 появилось два новых сочетания признаков: морщинистые и желтые; гладкие и зеленые.

2. Для каждой пары аллеломорфных признаков (фенотипов, определяемых различными аллелями) получилось отношение 3 : 1, характерное для моногибридного скрещивания - среди семян было 423 гладких и 133 морщинистых, 416 желтых и 140 зеленых.

Эти результаты позволили Менделю утверждать, что две пары признаков (форма и окраска семян), наследственные задатки которых объединились в поколении F1, в последующих поколениях разделяются и ведут себя независимо одна от другой. На этом основан второй закон Менделя - принцип независимого распределения, согласно которому кажВндый признак из одной пары признаков может соВнчетаться с любым признаком из другой пары.

2.4. Краткое изложение сутигипотез Менделя.

1. Каждый признак данного организма контролиВнруется парой аллелей.

2. Если организм содержит два различных аллеля для данного признака, то один из них (доминантВнный) может проявляться, полностью подавляя проявление другого (рецессивного).

3. При мейозе каждая пара аллелей разделяется (расщепляется) и каждая гамета получает по одному из каждой пары аллелей (принцип расщепВнления).

4. При образовании мужских и женских гамет в каждую из них может попасть любой аллель из одной пары вместе с любым другим из другой пары (принцип независимого распределения).

5. Каждый аллель передается из поколения в поВнколение как дискретная не изменяющаяся едиВнница.

6. Каждый организм наследует по одному аллелю (для каждого признака) от каждой из родиВнтельских особей.


3. Хромосомная теориянаследственности.

К концу XIX в. в результате повышения оптических качеств микроскопов и совершенствования цитологических методов возможно стало наблюдать поведение хромосом в гаметах и зиготах. Еще в 1875 г. Гертвиг обратил внимание на то, что при оплодотворении яиц морского ежа происходит слияние (двух ядер - ядра спермия и ядра яйцеклетки. В 1902 г. Бовери продемонстрировал важную роль ядра в (регуляции развития признаков организма, а в 1882 г. Флемминг описал поведение хромосом во время митоза.

В 1900 г. законы Менделя были вторично открыты и должным образом оценены почти одновременно и независимо друг от друга тремя учеными - де Фризом, Корренсом и Чермаком. Корренс
сфорВнмулировал выводы Менделя в привычной нам форВнме двух законов и ввел термин ВлфакторВ», тогда как Мендель для описания единицы наследственности пользовался словом ВлэлементВ». Позднее американец Уильям Сэттон
заметил удивительное сходство между поведением хромосом во время образования гамет и оплодотворения и передачей менделевских
наследственных факторов.

На основании изложенных выше данных Сэттон
и Бовери
высказали мнение, что хромосомы являются носителями менделевских
факторов, и сформулироВнвали так называемую хромосомную теорию наследственности.
Согласно этой теории, каждая пара факВнторов локализована в паре гомологичных
хромоВнсом, причем каждая хромосома несет по одному фактору. Поскольку число признаков у любого орВнганизма во много раз больше числа его хромосом, видимых в микроскоп, каждая хромосома должна содержать множество факторов.

В 1909 г. Иогансен
заменил термин фактор, ознаВнчавший основную единицу наследственности, терВнмином ген. Альтернативные формы гена, опредеВнляющие его проявление в фенотипе, назвали аллеля- ми. Аллели
- это конкретные формы, которыми моВнжет быть представлен ген, и они занимают одно и то же место - локус
- в гомологичных
хромосомах.


4. Сцепление.

Все ситуации и примеры, обсуждавшиеся до сих пор, относились к наследованию генов, находящихся в разных хромосомах. Как выяснили цитологи, у человека все соматические клетки содерВнжат по 46 хромосом. Поскольку человек обладает тысячами различных признаков - таких, например, как группа крови, цвет глаз, способность секретировать инсулин, - в каждой хромосоме должно наВнходиться большое число генов.

Гены, лежащие в одной и той же хромосоме, называют сцепленными. Все гены какой-либо одной хромосомы образуют группу сцепления; они обычно попадают в одну гамету и наследуются вместе. Таким образом, гены, принадлежащие к одной групВнпе сцепления, обычно не подчиняются менделевскому принципу независимого распределения. Поэтому при дигибридном скрещивании они не дают ожидаеВнмого отношения 9:3:3:1. В таких случаях полуВнчаются самые разнообразные соотношения. У дрозофилы гены, контролирующие окраску тела и длину крыла, представлены следующими парами аллелей (назоВнвем соответствующие признаки): серое тело - черВнное тело, длинные крылья - зачаточные (короткие) крылья. Серое тело и длинные крылья доминируют. Ожидаемое отношение фенотипов в F2 от скрещиваВнния между гомозиготой с серым телом и длинными крыльями и гомозиготой с черным телом и зачаВнточными крыльями должно составить 9: 3: 3: 1. Это указывало бы на обычное менделевское наследоваВнние при дигибридном скрещивании, обусловленное случайным распределением генов, находящихся в разных, негомологичных хромосомах. Однако вмесВнто этого в F2 были получены в основном родиВнтельские фенотипы в отношении примерно 3: 1. Это можно объяснить, предположив, что гены окраски тела и длины крыла локализованы в одной и той же хромосоме, т.е. сцеплены.

Практически, однако, соотношение 3:1 никогда не наблюдается, а возникают все четыре фенотипа. Это объясняется тем, что колкое сцепление встречаВнется редко. В большинстве экспериментов по скрещиВнванию при наличии сцепления помимо мух с роВндительскими фенотипами обнаруживаются особи с новыми сочетаниями признаков. Эти новые фенотиВнпы называют рекомбинантными. Все это позволяет дать следующее определение сцепления: два или более генов называют сцепленными, если потомки с новыми генными комбинациями (рекомбинанты) встречаются реже, чем родительские фенотипы.

5. Группы сцепления и хромосомы.

Генетические исследования, провоВндившиеся в начале нашего века, в основном были направлены на выяснение роли генов в передаче признаков. Работы Моргана с плодовой мушкой Drosophila melanogaster показали, что большинство фенотипических признаков объединено у нее в четыВнре группы сцепления и признаки каждой группы наследуются совместно. Было замечено, что число групп сцепления соответствует числу пар хромосом.

Изучение других организмов привело к сходным результатам. При экспериментальном скрещивании разнообразных организмов обнаружилось, что неВнкоторые группы сцепления больше других (т.е. в них больше генов). Изучение хромосом этих организмов показало, что они имеют разную длину. Морган доказал наличие четкой связи между этими наблюдениями. Они послужили дополнительными подтверждениями локализации генов в хромосомах.

5.1. Гигантские хромосомы и гены.

В 1913 г. Стертевант начал свою работу по картироВнванию положения генов в хромосомах дрозофилы, во это было за 21 год до того, как появилась возможность связать различимые в хромосомах структуры с генами. В 1934 г. было замечено, что в клетках слюнных желез дрозофилы хромосомы приВнмерно в 100 раз крупнее, чем в других соматических клетках. По каким-то причинам эти хромосомы многократно удваиваются, но не отделяются друг от друга, до тех пор пока их не наберется несколько тысяч, лежащих бок о бок. Окрасив хромосомы и изучая их с помощью светового микроскопа, можно увидеть, что они состоят из чередующихся светлых и темных поперечных полос. Для кажВндой хромосомы характерен свой особый рисунок полос. Первоначально предполагали, что эти полосы представляют собой гены, но оказалось, что дело обстоит не так просто. У дрозофилы можно искусственным путем вызыВнвать различные фенотипические аномалии, которые сопровождаются определенными изменениями в риВнсунке поперечных полос, видимых под микроскоВнпом. Эти фенотипические и хромосомные аномалии коррелируют в свою очередь с генными локусами. Это позволяет сделать вывод, что полосы на хромосомах действиВнтельно как-то связаны с генами, но взаимоотношеВнния между теми и другими остаются пока неясными.

6. Определение пола.


Рисунок 1. Хромосомные наборы самца и самки D. melanogaster. Они состоят из четырех пар хромосом (пара I - половые хромосомы).

Рисунок 2. Вид половых хромосом человека в метафазе митоза.

Особенно четким примером описанного выше меВнтода установления зависимости между фенотипи- ческими признаками организмов и строением их хромосом служит определение пола. У дрозофилы фенотипические различия между двумя полами явно связаны с различиями в хромосомах (рис. 1). При изучении хромосом у самцов и самок ряда животных между ними были обнаружены некоторые различия. Как у мужских, так и у женских особей во всех клетках имеются пары одинаковых (гомологичных) хромосом, но по одной паре хромосом они различаются. Это валовые хромосомы (гетеросомы). Все остальные хромосомы называют аутосомами. Как можно видеть на рис. 1, у дрозофилы четыре пары хромосом. Три пары (II, III и IV) идентичны у обоих полов, но пара I, состоящая из идентичных хромосом у самки, различается у самца. Эти хромосомы называют X - и Y - хромосомами; генотип самки XX, а самца - XY. Такие различия по половым хромосомам характерны для большинства животных, в том числе для человека (рис. 1), но у птиц (включая кур) и у бабочек наблюдается обратная картина: у самок имеются хромосомы XY, а у самцов - XX. У некоторых насекомых, например у прямокрылых, Y - хромосомы нет вовсе, так что самец имеет генотип ХО.

При гаметогенезе наблюдается типичное менделевское расщепление по половым хромосомам. НаВнпример, у млекопитающих каждое яйцо содержит одну Х - хромосому, половина спермиев - одну X - хромосому, а другая половина - одну Y - хромосому. Пол потомка зависит от того, какой спермий оплодотворит яйцеклетку. Пол с генотипом XX называют гомогаметным, так как у него образуются одинаковые гаметы, содержащие только Х - хромосомы, а пол с генотипом XY-гетерогаметным, так как половина гамет содержит X-, а половина - Y - хромосому. У человека генотипический пол данного индивидуума определяют, изучая неделящиеся клетки. Одна Х - хромосома всегда окаВнзывается в активном состоянии и имеет обычный вид. Другая, если она имеется, бывает в покоящемся состоянии, в виде плотного темно - окрашенного тельВнца, называемого тельцем Барра. Число телец Барра всегда на единицу меньше числа наличных Х - хромосом, т.е. у самца (XY) их нет вовсе, а у самки (ХХ) - только одно. Функция Y - хромосомы, очевидВнно, варьирует в зависимости от вида. У человека Y - хромосома контролирует дифференцировку сеВнменников, которая в дальнейшем влияет на развиВнтие половых органов и мужских признаков. У большинства организмов, однако, Y - хромосома не содержит генов, имеющих отношеВнние к полу. Ее даже называют генетически инертной или генетически пустой, так как в ней очень мало генов. Как полагают, у дрозофилы гены, определяюВнщие мужские признаки, находятся в аутосомах, и их фенотипические эффекты маскируются наличием паВнры Х - хромосом; в присутствии одной Х -
хромосомы мужские признаки проявляются. Это пример наследования, ограниченного
полом (в отличие от наследования, сцепленного с полом), при котором, например, у женщин подавляются гены, детерминиВнрующие рост бороды.

Морган и его сотрудники заметили, что наследоВнвание окраски глаз у дрозофилы
зависит от пола родительских особей, несущих альтернативные аллели.
Красная окраска глаз доминирует над белой. При скрещивании красноглазого самца с белоглазой самкой в F1
, получали равное число красноглазых самок и белоглазых самцов.
Однако при скрещивании белоглазого самца с красноглазой самкой в F
1 были получены в равном числе красноВнглазые самцы и самки. При скрещиваВннии этих мух F1
, между собой были получены красноглазые самки, красноглазые и белоглазые самцы, но не было ни одной белоглазой самки. Тот факт, что у самцов частота проВнявления рецессивного признака была выше, чем у самок, наводил на мысль, что рецессивный аллель, определяющий белоглазость, находится в Х - хромосоме, а Y - хромосома лишена гена окраски глаз. Чтобы проверить эту гипотезу, Морган скрестил исходного белоглазого самца с красноглазой самВнкой из F1. В потомстве были поВнлучены красноглазые и белоглазые самцы и самки. Из этого Морган справедливо заключил, что только Х - хромосома несет ген окраски глаз. В Y - хромосоме соответствующего локуса вообще нет. Это явлеВнние известно под названием наследования, сцепленВнного с полом.

6.1. Наследование, сцепленное с полом.

Гены, находящиеся в половых хромосомах, называВнют сцепленными с полом. В Х - хромосоме имеется участок, для которого в Y-хромосоме нет гомолога. Поэтому у особей мужского пола приВнзнаки, определяемые генами этого участка, проВнявляются даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом, наВнпример цветовой слепоты, раннего облысения и гемофилии у человека. Гемофилия - сцепленный с полом рецессивный признак, при котором нарушаВнется образование фактора VIII, ускоряющего сверВнтывание крови. Ген, детерминирующий синтез факВнтора VIII, находится в участке Х - хромосомы, не имеющем гомолога, и представлен двумя аллелями - доминантным нормальным и рецессивным мутантным.

Возможны следующие генотипы и фенотипы:

Генотип

Фенотип

XHXH

Нормальная женщина

XHXh

Нормальная женщина (носитель)

XHy

Нормальный мужчина

XhY

Мужчина - гемофилитик

Особей женского пола, гетерозиготных по любому из сцепленных с полом признаков, называют носителями соответствующего рецессивного гена. Они фенотипически нормальны, но половина их гамет несет рецессивный ген. Несмотря на наличие у отца нормального гена, сыновья матерей - носителей с вероятностью 50% будут страдать гемофилией.

От брака женщины - носителя с нормальным мужчиВнной могут родиться дети с различными фенотипами. Один из наиболее хорошо документированных примеров наследования гемофилии мы находим в родословной потомков английской королевы ВиктоВнрии. Предполагают, что ген гемофилии возник в результате мутации у самой королевы Виктории или у одного из ее родителей. На рис. 3 показано, как этот ген передавался ее потомкам.

7. Взаимодействие между генами.

До сих пор рассматривались относиВнтельно простые аспекты генетики: доминирование, моногибридное и дигибридное скрещивание, сцеплеВнние, определение пола и наследование, сцепленное с полом. Известны, однако, и другие взаимодействия между генами, и возможно, что именно они опредеВнляют большую часть фенотипических признаков организма.

7.1. Неполное доминирование.

Известны случаи, когда два или более аллелей не проявляют в полной мере доминантность или рецесВнсивность, так что в гетерозиготном состоянии ни один из аллелей не доминирует над другим. Это явление неполового доминирования, или кодоминантность, представляет собой исключение из описанноВнго Менделем правила наследования при моногибридных скрещиваниях. К счастью, Мендель выбрал для своих экспериментов признаки, которым не свойственно неполное доминирование; в противном случае оно могло бы сильно осложнить его первые исследования.

Неполное доминирование наблюдается как у расВнтений, так и у животных. В большинстве случаев гетерозиготы обладают фенотипом, промежуточным между фенотипами доминантной и рецессивной гомозигот. Примером служат андалузские куры, полученные в результате скрещивания чистопородВнных черных и Влобрызганных белыхВ» (splashed white) кур. Черное оперение обусловлено наличием аллеля, определяющего синтез черного пигмента меланина. У ВлобрызганныхВ» кур этот аллель отсутствует. У гетерозигот меланин развивается не в полной мере, создавая лишь голубоватый отлив на оперении.

Поскольку общепринятых символов для обознаВнчения аллелей с неполным доминированием не суВнществует, нам необходимо ввести для генотипов такие символы, чтобы сделать понятными приВнведенные ниже схемы получения андалузских кур.

Возможны, например, такие обозначения: черные - В, ВлобрызганныеВ» - , W, BWили BBW. Результаты скрещивания между гомозиготными черными и ВлобрызганнымиВ» курами представлены в табл. 2.

При скрещивании между собой особей F1 отВнношение фенотипов в F2 отличается от менделевского отношения 3 : 1, типичного для моногибридного скрещивания. В этом случае получается отношение 1:2:1, где у половины особей F2 будет такой же генотип, как у F1 (табл. 3). Отношение 1 : 2 : 1 характерно для результатов скрещиваний при неВнполном доминировании.

Фенотипы родителей

Черные (гомозиготы)тАЬОбрызганныетАЭ белые (гомозиготы)
Генотипы родителей (2n)BB

BWBW

Мейоз
Гаметы (n)B B

BW BW

Случайное оплодотворение

Генотипы F1 (2n)

BBW BBW

BBW BBW

Фенотипы F1

Все куры - тАЬголубыетАЭ гетерозигты

Таблица 2.Скрещивание кур андалузской породы: гибриды F1.

Фенотипы F1

тАЬголубыетАЭтАЬголубыетАЭ

Генотипы F1 (2n)

BBW

BBW

Мейоз
Гаметы (n)

B BW

B BW

Случайное оплодотворение

Генотипы F2 (2n)

BB BBW

BBW BW BW

Фенотипы F2

Черные

1 :

Голубые

2

тАЬОбрызганныетАЭ белые

: 1

Таблица 3.Скрещивание кур андалузской породы: гибриды F2.

7.2. Летальные гены.

Известны случаи, когда один ген может оказывать влияние на несколько признаков, в том числе на жизнеспособность. У человека и других млекопиВнтающих определенный рецессивный ген вызывает образование внутренних спаек легких, что приводит к смерти при рождении. Другим примером служит ген, который влияет на формирование хряща и вызывает врожденные уродства, ведущие к смерти плода или новорожденного.

У кур, гомозиготных по аллелю, вызывающему ВлкурчавостьВ» перьев, неполное развитие перьев влечет за собой несколько фенотипических эффекВнтов. У таких кур теплоизоляция недост

Вместе с этим смотрят:


G-белки и их функция


Австралопитеки - обезьянолюди или человекообезьяны?


Адаптация микроорганизмов в экстремальных условиях космоса


Адвентивна флора Чернiгiвськоi областi: iсторiя формування та сучасний стан


Адсорбция ионных и неионных поверхностно-активных веществ (ПАВ)