Обмены веществ, происходящие в клетках человека
Реферат на тему:
"Обмены веществ, происходящие в клетках человека"
Строение и функции клетки
По наличию оформленного ядра все клеточные организмы делятся на две группы: прокариоты и эукариоты.
Прокариоты (безъядерные организмы) тАФ примитивные организмы, не имеющие четко оформленного ядра. В таких клетках выделяется лишь ядерная зона, содержащая молекулу ДНК. Кроме того, в клетках прокариотов отсутствуют многие органоиды. У них имеются только наружная клеточная мембрана и рибосомы. К прокариотам относятся бактерии и синезеленые водоросли (цианеи).
Эукариоты тАФ истинно ядерные, имеют четко оформленное ядро и все основные структурные компоненты клетки. К эукариотам относятся растения, животные, грибы. Эукариотная клетка имеет сложное строение. Она состоит из трех неразрывно связанных частей:
1) наружной клеточной мембраны, у некоторых дополнительно имеется оболочка;
2) цитоплазмы и ее органоидов;
3) ядра.
Наружная клеточная мембрана тАФ двумем-бранная клеточная структура, которая ограничивает живое содержимое клетки всех организмов. Обладая избирательной проницаемостью, она защищает клетку, регулирует поступление веществ и обмен с внешней средой, поддерживает определенную форму клетки. Клеточная мембрана состоит из двойного слоя фосфолипидов, обращенных друг к другу своими гидрофобными концами из радикалов высших жирных кислот; снаружи располагаются гидрофильные остатки фосфорной кислоты и глицерина. В билипид-ный слой мозаично вкраплены молекулы белков, одна часть которых пронизывает мембрану, а другая тАФ располагается на поверхности или частично погружена в нее. С наружной стороны с белками и липидами соединены углеводы.
Вещества поступают в клетку различными путями: диффузно (низкомолекулярные ионы); осмосом (вода); активным транспортом (через специальные белковые каналы) с затратой энергии; с помощью эндоцитоза (крупные частицы).
Клетки растительных организмов, грибов кроме мембраны снаружи имеют еще и оболочку. Эта неживая клеточная структура состоит из целлюлозы, придает прочность клетке, защищает ее, является ВлскелетомВ» растений и грибов. В оболочке имеются поры, через которые идет поступление веществ.
В цитоплазме, полужидком содержимом клетки, находятся все органоиды.
Эндоплазматическая сеть (ЭПС) тАФ одномембранная система канальцев, трубочек, цистерн, которая пронизывает всю цитоплазму. Она разделяет ее на отдельные отсеки, в которых идет синтез различных веществ, обеспечивает сообщение между отдельными частями клетки и транспорт веществ. Различают гладкую и гранулярную ЭПС. На гладкой тАФ идет синтез липидов, на гранулярной тАФ располагаются рибосомы и синтезируется белок.
Рибосомы тАФ мелкие тельца грибовидной формы, в которых идет синтез белка. Они состоят из рибосомальной РНК и белка, образующих большую и малую субъединицы.
Аппарат Гольджи тАФ одномембранная структура, связанная с ЭПС, обеспечивает упаковку и вынос синтезируемых веществ из клетки. Кроме того, из его структур образуются лизосомы.
Лизосомы тАФ шарообразные тельца, содержащие гидролитические ферменты, которые расщепляют высокомолекулярные вещества, т. е. обеспечивают внутриклеточное переваривание.
Митохондрии тАФ полуавтономные двумем-бранные структуры продолговатой формы. Наружная мембрана гладкая, а внутренняя имеет складки тАФ кристы, увеличивающие ее поверхность. Внутри митохондрия заполнена матриксом, в котором находятся кольцевая молекула ДНК, РНК, рибосомы.
Количество митохондрий в клетках различно, с ростом клеток их число увеличивается в результате деления. Митохондрии тАФ это Влэнергетические станцииВ» клетки. В процессе дыхания в них происходит окончательное окисление веществ кислородом воздуха. Выделяющаяся энергия запасается в молекулах АТФ, синтез которых происходит в этих структурах.
Пластиды характерны для растительных клеток. Существуют три вида пластид: хлоропласты, лейкопласты и хромопласты.
Хлоропласты тАФ полуавтономные двумембранные органоиды продолговатой формы, зеленого цвета. Внутренняя часть заполнена стромой, в которую погружены граны. Граны образованы из мембранных структур тАФ тилакоидов. В строме имеются кольцевая молекула ДНК, РНК, рибосомы. На мембранах располагается фотосинтезирующий пигмент тАФ хлорофилл. В хлоропластах протекает процесс фотосинтеза. На мембране тилакоида идут реакции световой фазы, а в строме тАФ темновой.
Хромопласты тАФ двумембранные органоиды шарообразной формы, содержащие красный, оранжевый и желтый пигменты. Хромопласты придают окраску цветкам и плодам, образуются из хлоропластов.
Лейкопласты тАФ бесцветные пластиды, находящиеся в неокрашенных частях растения. Содержат запасные питательные вещества, могут на свету переходить в хлоропласты.
Кроме хлоропластов растительные клетки имеют и вакуоли тАФ мембранные тельца, заполненные клеточным соком и питательными веществами.
Клеточный центр обеспечивает процесс деления клетки. Он состоит из двух центриолей и центросферы, которые образуют нити веретена деления и способствуют равномерному распределению хромосом в делящейся клетке. Характерны для животных клеток. -
Ядро тАФ центр регуляции жизнедеятельности клетки. Ядро отделено от цитоплазмы двойной ядерной мембраной, пронизанной порами. Внутри оно заполнено кариоплазмой, в которой находятся молекулы ДНК. Ядерный аппарат регулирует все процессы жизнедеятельности клетки, обеспечивает передачу наследственной информации. Здесь происходит синтез ДНК, РНК, рибосом. Часто в ядре можно увидеть одно или несколько темных округлых образований тАФ ядрышек, в которых формируются и скапливаются рибосомы. Молекулы ДНК несут наследственную информацию, которая определяет признаки данного организма, органа, ткани, клетки. В ядре молекулы ДНК не видны, так как находятся в виде тонких нитей хроматина. Во время деления ДНК сильно спирализуются, утолщаются, образуют комплексы с белком и превращаются в хорошо заметные структуры тАФ хромосомы.
Кроме перечисленных некоторые клетки имеют специфические органоиды тАФ реснички и жгутики, которые обеспечивают движение, преимущественно одноклеточных организмов. Имеются они и у некоторых клеток многоклеточных организмов (ресничный эпителий). Реснички и жгутики представляют собой выросты цитоплазмы, окруженные клеточной мембраной. Внутри выростов находятся микротрубочки, сокращение которых приводит в движение клетку.
Обмен веществ и превращения энергии в клетке
Основой жизнедеятельности клетки является обмен веществ и превращение энергии. Обмен веществ тАФ совокупность всех реакций синтеза и распада, протекающих в организме, связанных с выделением или поглощением энергии. Обмен веществ и энергии состоит из двух взаимосвязанных и противоположных процессов: ассимиляции и диссимиляции.
Ассимиляция, или пластический обмен, тАФ совокупность реакций синтеза высокомолекулярных органических веществ, сопровождающихся поглощением энергии за счет распада молекул АТФ.
Диссимиляция, или энергетический обмен, тАФ совокупность реакций распада и окисления органических веществ, сопровождающихся выделением энергии и запасанием ее в синтезируемых молекулах АТФ.
Все реакции обмена веществ идут в присутствии ферментов. АТФ является основным веществом, которое обеспечивает все энергетические процессы в клетке, запасает энергию в процессе энергетического обмена и отдает в процессе пластического обмена.
Единственным источником энергии на земле является солнце. Клетки растений с помощью хлоропластов улавливают энергию солнца, превращая ее в энергию химических связей молекул синтезированных органических веществ. В растениях идет первичный синтез органических веществ из неорганических: углекислого газа и воды за счет энергии солнца. Все остальные организмы используют готовые органические вещества, расщепляют их, а выделяющаяся энергия запасается в молекулах АТФ. Запасенная энергия расходуется в процессе пластического обмена на синтез органических веществ, специфичных для каждого организма. Часть энергии в процессе обмена веществ постоянно теряется в виде тепла, поэтому в системы живых организмов необходим постоянный приток энергии. Таким образом, солнечная энергия аккумулируется в органических веществах, а затем используется в процессе жизнедеятельности организма.
По способу питания, источнику получения органических веществ и энергии организмы делятся на автотрофные и гетеротрофные.
Автотрофные организмы синтезируют органические вещества в процессе фотосинтеза из неорганических (углекислого газа, воды, минеральных солей), используя энергию солнечного света. К ним относятся все растительные организмы, синезеленые водоросли (цианобактерии). К автотрофному питанию способны и хемо-синтезирующие бактерии, использующие энергию, которая выделяется при окислении неорганических веществ: серы, железа, азота.
Гетеротрофные организмы получают готовые органические вещества от автотрофов. Источником энергии являются органические вещества, которые распадаются и окисляются в процессе диссимиляции. К ним относятся животные, грибы, многие бактерии.
Автотрофы способны усваивать неорганический углерод и другие элементы. Гетеротрофы усваивают только органические вещества, получая энергию при их расщеплении. Автотрофные и гетеротрофные организмы связаны между собой процессами обмена веществ и энергии.
Энергетический обмен
Энергетический обмен состоит из трех этапов.
I этап тАФ подготовительный. На первом этапе происходит расщепление высокомолекулярных органических веществ до низкомолекулярных в процессе реакций гидролиза, идущих при участии воды. Он протекает в пищеварительном тракте, а на клеточном уровне тАФ в лизосомах. Вся энергия, выделяющаяся на подготовительном этапе, рассеивается в виде тепла.
Реакции подготовительного этапа:
белки + Н20тАФВ» аминокислоты + С; углеводы + Н20 тАФВ»глюкоза + ф; жиры + Н20 тАФ> глицерин + высшие жирные + кислоты
II этап тАФ гликолиз, бескислородное окисление. Глюкоза является ключевым веществом обмена в организме. Все остальные вещества на разных стадиях втягиваются в процессы ее превращения. Дальнейшее расщепление органических веществ рассматривается на примере обмена глюкозы.
Процесс гликолиза протекает в цитоплазме. Глюкоза расщепляется до 2 молекул пировиноградной кислоты (ПВК), которые в зависимости от типа клеток и организмов могут превращаться в молочную кислоту, спирт или другие органические вещества. При этом выделяющаяся энергия частично запасается в 2 молекулах АТФ, а частично расходуется в виде тепла. Бескислородные процессы называются брожением.
Реакции гликолиза:
С6Н1206-+>2С3Н403+4Н-глюкоза
ПВК2АТФ
2С3Н603 (молочная кислота) молочнокислое брожение
2С2Н5ОН + 2С02 (этиловый спирт) спиртовое брожение
В результате ступенчатого расщепления глюкозы образуются 2 молекулы ПВК тАФ С3Н403. При этом освобождаются еще 4 атома Н, которые соединяются с переносчиком НАД+, и образуются 2НАД тАв Н + Н+. Дальнейшая судьба ПВК зависит от наличия кислорода. В анаэробных условиях ПВК превращается в молочную кислоту или этанол с участием тех же двух молекул НАД тАв Н + Н+, которые возвращают водород. Если же процесс идет в аэробных условиях, то ПВК и 2НАД тАв Н + Н+ вступают в реакции биологического окисления.
III этап тАФ кислородный. Биологическое окисление протекает в митохондриях. Пировиноградная кислота поступает в митохондрии, где преобразуется в уксусную кислоту, соединяется с ферментом-переносчиком и входит в серию циклических реакций тАФ цикл Кребса. В результате этих реакций при участии кислорода образуются углекислый газ и вода, а на кристах митохондрий за счет выделяющейся энергии синтезируется 36 молекул АТФ.
Реакции кислородного этапа:
2С3Н403 + 602 + 4Н - 6С02 + 6Н20.
Таким образом, при расщеплении глюкозы на двух этапах образуется суммарно 38 молекул АТФ, причем основная часть тАФ при кислородном окислении.
Процесс биологического окисления органических веществ называется дыханием.
Пластический обмен. Фотосинтез
Фотосинтез тАФ процесс первичного синтеза органических веществ из неорганических (углекислого газа и воды) под действием солнечного света. Протекает у растений в хлоропластах. Выделяют две фазы фотосинтеза.
1. Световая фаза. Фотолиз воды. Синтез АТФ. Протекает на мембранах тилакоидов только при участии солнечного света. За счет энергии солнца протекают три группы реакций:
1) возбуждение хлорофилла, отрыв электронов и синтез АТФ за счет энергии возбужденных электронов;
2) фотолиз воды тАФ расщепление молекулы воды;
3) связывание ионов водорода с переносчиком НАДФ.
Кванты света, попав на хлорофилл, приводят молекулу в возбужденное состояние. При этом электроны переходят в возбужденное состояние и проходят по электронной цепи на мембране до места синтеза АТФ. Одновременно под действием света идет расщепление молекулы воды и образование ионов водорода. На мембране тилакоидов происходит соединение ионов водорода с переносчиком НАДФ за счет электронов хлорофилла, а выделившаяся энергия идет на синтез АТФ. Образовавшиеся при фотолизе воды ионы кислорода отдают электроны на хлорофилл и превращаются в свободный кислород, который выделяется в атмосферу.
2. Темновая фаза. Фиксация углерода. Синтез глюкозы. Для протекания реакций второй стадии наличие света необязательно. Источником энергии являются синтезированные на первой стадии молекулы АТФ.
В строме хлоропластов, куда поступают НАДФ тАв Н 4- Н+, АТФ и углекислый газ из атмосферы, протекают циклические реакции, в результате которых идет фиксация углекислого газа, его восстановление водородом за счет НАДФ х х Н + Н+ и синтез глюкозы. Эти реакции идут за счет энергии АТФ, запасенной в световой фазе.
Схематично уравнение темновой фазы можно представить следующим образом:
С6Н1206 + НАДФ+С02 + НАДФ тАв Н + Н+2АДФ
Суммарное уравнение фотосинтеза:
6С02 + 6Н20 -222+ С6Н1206 + 602Т.
Пластический обмен. Биосинтез белка
Наиболее важным процессом пластического обмена является биосинтез белка. Он протекает во всех клетках организмов.
Генетический код. Аминокислотная последовательность в молекуле белка зашифрована в виде нуклеотидной последовательности в молекуле ДНК и называется генетическим кодом. Участок молекулы ДНК, ответственный за синтез одного белка, называется геном.
Характеристика генетического кода.
1.Код триплетен: каждой аминокислоте соответствует сочетание из 3 нуклеотидов. Всего таких сочетаний тАФ 64 кода. Из них 61 код смысловой, т. е. соответствует 20 аминокислотам, а 3 кода тАФ бессмысленные, стоп-коды, которые не соответствуют аминокислотам, а заполняют промежутки между генами.
2. Код однозначен тАФ каждый триплет соответствует только одной аминокислоте.
3. Код вырожден тАФ каждая аминокислота имеет более чем один код. Например, у аминокислоты глицин тАФ 4 кода: ЦЦА, ЦЦГ, ЦЦТ, ЦЦЦ, чаще у аминокислот их 2тАФ3.
4. Код универсален тАФ все живые организмы имеют один и тот же генетический код аминокислот.
5. Код непрерывен тАФ между кодами нет промежутков.
6. Код неперекрываем тАФ конечный нуклеотид одного кода не может служить началом другого.
Условия биосинтеза. Для биосинтеза белка необходима генетическая информация молекулы ДНК; информационная РНК тАФ переносчик этой информации из ядра к месту синтеза; рибосомы тАФ органоиды, где происходит собственно синтез белка; набор аминокислот в цитоплазме; транспортные РНК, кодирующие аминокислоты и переносящие их к месту синтеза на рибосомы; АТФ тАФ вещество, обеспечивающее энергией процесс кодирования и биосинтеза.
Этапы биосинтеза
Транскрипция тАФ процесс биосинтеза всех видов РНК на матрице ДНК, который протекает в ядре.
Определенный участок молекулы ДНК деспирализуется, водородные связи между двумя цепочками разрушаются под действием ферментов. На одной цепи ДНК, как на матрице, по принципу комплементарное из нуклеотидов синтезируется РНК-копия. В зависимости от участка ДНК таким образом синтезируются рибосомные, транспортные, информационные РНК.
После синтеза иРНК она выходит из ядра и направляется в цитоплазму к месту синтеза белка на рибосомы.
Трансляция тАФ процесс синтеза полипептидных цепей, осуществляемый на рибосомах, где иРНК является посредником в передаче информации о первичной структуре белка.
Биосинтез белка состоит из ряда реакций.
1. Активирование и кодирование аминокислот. тРНК имеет вид клеверного листа, в центральной петле которого располагается триплет-ный антикодон, соответствующий коду определенной аминокислоты и кодону на иРНК. Каждая аминокислота соединяется с соответствующей тРНК за счет энергии АТФ. Образуется комплекс тРНКтАФаминокислота, который поступает на рибосомы.
2. Образование комплекса иРНКтАФрибосома. иРНК в цитоплазме соединяется рибосомами на гранулярной ЭПС.
3. Сборка полипептидной цепи. тРНК с аминокислотами по принципу комплементарности антикодона с кодоном соединяются с иРНК и входят в рибосому. В пептидном центре рибосомы между двумя аминокислотами образуется пептидная связь, а освободившаяся тРНК покидает рибосому. При этом иРНК каждый раз продвигается на один триплет, внося новую тРНК тАФ аминокислоту и вынося из рибосомы освободившуюся тРНК. Весь процесс обеспечивается энергией АТФ. Одна иРНК может соединяться с несколькими рибосомами, образуя полисому, где идет одновременно синтез многих молекул одного белка. Синтез заканчивается, когда на иРНК начинаются бессмысленные кодоны (стоп-коды). Рибосомы отделяются от иРНК, с них снимаются полипептидные цепи. Так как весь процесс синтеза протекает на гранулярной эндо-плазматической сети, то образовавшиеся полипептидные цепи поступают в канальца ЭПС, где приобретают окончательную структуру и превращаются в молекулы белка.
Все реакции синтеза катализируются специальными ферментами с затратой энергии АТФ. Скорость синтеза очень велика и зависит от длины полипептида. Например, в рибосоме кишечной палочки белок из 300 аминокислот синтезируется приблизительно за 15тАФ20 с.
Вместе с этим смотрят:
Австралопитеки - обезьянолюди или человекообезьяны?
Адаптация микроорганизмов в экстремальных условиях космоса
Адвентивна флора Чернiгiвськоi областi: iсторiя формування та сучасний стан
Адсорбция ионных и неионных поверхностно-активных веществ (ПАВ)